简单的说,这两者绝对不是对立的,而是相辅相成,融为一体的。
CNN卷积层干的是什么?你随便train好一个网络,把前几层filter可视化一下,是不是就是典型的检测各种边缘点线面特征的滤波器?这难道不是我们在传统数字图像处理里学到的东西吗?
而有传统数字图像处理训练的人,对图像空域频域概念的理解,也会导致他在做深度学习的时候很多思考会比没有这方面训练的人深入的多。
何况,传统图像处理因为简单、快速、资源耗费少,现在还在很多地方得到广泛的应用,不是哪里都需要深度学习那么高的精度的。深度学习里你不还得用传统方法做各种预处理。
最后,现在很多人也在回过头思考,觉得做了深度学习就把传统数字图像处理那一套完全丢弃了,是不是一种损失和浪费。因此现在把两者结合,比如把radon变换、hough变换、sift、小波之类的各种东西引入神经网络,两者结合,试图达到针对某些特定问题的更好效果。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 tinynews.org All Rights Reserved. 百科问答小站 版权所有