之前在刚毕业加入互联网这行的时候,也很焦虑也很着急,那会儿特别想做互联网产品序列的工作,但是脑袋里一片浆糊,不知道从何入手。
我先说说我的经历,然后再顺着我的经历讲数据分析这块的学习和提升的方法论,避免大家少走弯路,能用正确的方法快速成长。
很多小伙伴留言时都会提到不知道自己是否适合数据分析,害怕自己零基础入门难,或者文科生学不会。
其实最好的办法就是去尝试。
这里我给大家推荐一个免费的商业数据分析入门训练营。通过5天的学习,让你接触真正的数据分析思维与方法,体验2大主流数据工具,体验用数据分析解决商业问题。体验之后你就知道自己是不是真的适合数据分析了。
点击下面的链接就可以免费获得~
我刚毕业那会儿是13年,面了很多网络游戏公司,因为从小特别热爱游戏,也面了很多互联网公司,因为那会儿移动互联网刚起步没多久是一个风口,自己也挺喜欢,最终还是选择了游戏行业,因为还是遵循内心最真实的想法,选择自己热爱的领域作为未来的事业,这个选择一直到现在我都觉得很正确。
13年那会开始以管理培训生的身份到北京的一家知名游戏公司实习,机缘巧合,被选拔到了上海分公司做产品运营,负责一个moba+rpg项目的商业化和产品调优模块,刚去那会儿哪儿会这些专业的东西啊,去的时候甚至连封闭测试的目的都不知道,后来也是一个个问在工作中打磨出了方法论。说实话当时负责的是商业化和产品调优模块,如果你没有数据,你怎么去给研发提调优建议,怎么去设计商业化活动,如果商业化活动有问题你连调整的依据都没有,所以从那儿开始就开始接触数据分析的工作。
最开始的时候,我们内部对于用户流失的指标定义有很大的歧义,但是如果这个指标不确定下来,我们接下来的分析的结论会出现很大的偏差,最终会影响我们的调优决策,从而影响最终的业务,当时因为年轻也没有考虑太多就按照公司统一标准来,但现在转过头发现,真的很坑,当年的很多结论都是不对的,严重影响了大家的决策和判断。这里提到第一个点,叫做:业务数据指标的定义。这个东西至关重要!!!
当我们有了业务指标的定义的时候,需要去确定很多东西,比如说观测数据的维度,统计的周期等,比如拿一个最简单的流失分析来说,可能我的分析思路是抽丝剥茧,从大到小,逐项缩小范围的分析方式,那么具体分析的时候怎么分析呢?很多人都知道是看流失时的等级,如果等级看不出具体问题,还得到任务,如果任务还看不出来要到具体的客户端点击,当然这些都只是常规的操作,甚至如果有足够的经验和积累,不用做分析都大概知道哪里有问题,我们需要的分析不仅仅只局限于此,而是要更加的深入,深入的玩家背后的动机。这里提到第二个点,叫做:数据观测的维度,和统计的周期。这个东西同样直观重要!!!
在上海做了一年的产品运营之后,后续我调回北京总部,担任数据分析师,我是从普通数据分析师一步步走上管理岗位的,现在是公司业务数据部门的负责人,当然在15-19年这四年的过程中,对于产品设计,产品运营,数据分析,机器学习等相关领域均有比较深度的涉猎,所以在数据驱动业务这个事务上还算处理得比较得心应手,也推动了公司往“数据驱动”和“精细化运营”的方向发展,公司在这块的投入也逐步加大。
在这里,对于新人而言,我不会只推荐一些没啥卵用的书籍给你,比如《深入浅出数据分析》,这种书一点用都没有,我会给你推荐有用的书籍和实用的学习方法,看不好的书,看无用的书,往往感动了自己,却感动不了他人(你的上司和合作伙伴),你的能力并没有得到提升。
对于数据分析的小白而言,对于我现在培养的应届生而言,我有如下几个要求:
1)sql语句,你必须要给我学精通了,增删改查,以及存储过程你都需要样样精通,这块的话,给大家推荐一个学习地址,如果大家感兴趣或者有问题可以私信我要我之前整理学习文档资料
2)python,python的学习是为了让你后续处理繁杂庞大的数据集时更高效更方便更快速,以及后续有很多机器学习也好,或者深度学习也好的应用项目你能上手。这里推荐一个学习地址,大家可以多看,如果有问题可以私信我要我之前整理的学习文档资料
1)基本数学原理,统计相关的原理,比如平均值,方差,标准差,导数,反函数,拉格朗日等等,这里大家可以去csdn也好或者淘宝也好买一本相关的书籍就够用。
2)机器学习算法原理:回归算法,分类算法,聚类算法等等,比如最简单的分类算法:决策树,他的数学原理你真的掌握吗?信息熵和条件熵是啥意思,怎么计算的知道么?如果你只能调包,那么解决简单的问题ok,涉及到很多复杂的情形,比如样本不均衡,比如特征过少时,你就无从下手。这块的话,推荐大家多去逛逛csdn这个论坛,很有用,能学到不少东西。如下链接大家可以翻译成中文好好看,如果需要详细的算法原理资料,可以私信找我
3)动手做一些虚拟案例,或者参与组里同事的一些项目,比如一个游戏内广告聊天拉人识别的项目,其本质是通过分类算法达成文本识别,这块涉及到的知识点可能有:文本处理,分类算法应用等,这块可以多去github上转转,有一些也许是已经运营过的案例能够给你启发的。
1)如果是游戏行业的:
2)传统互联网(非游戏):
我们在做具体的数据分析的时候,有时候需要快速响应业务,有时候通过传统分析方法很难找到问题点,这个时候积累就至关重要,游戏行业的产品决策,40%依靠数据,30%依靠用户反馈,还有30%依靠经验,这个经验就是积累。
积累是什么?积累是过往的产品调整,活动设计,跟数据之间的关系,我们只有在每一项工作都认真严谨对待的基础上,这个积累工作才能做好,这样你的产品和数据敏锐度会越来越高,后续你可以跨界成为产品专家。
我们有很多的数据分析师,一直都处于很被动的状态,业务提什么需求你照做,久而久之就变成一个机械式地接需求完成需求的人员,毫无存在感。怎么改变这个现状呢?第一是要多做积累就如同上述第四点所说,这块急不得需要时间,第二是需要主动,把自己当作半个产品或运营负责人来对待,这样面对日常数据的时候,你会主动去完善日常监控指标,你会每日去盯着数据的异常和变化,你会根据这些异常和变化往下去进行深度的挖掘,或者数据没有异常时,按照经验这个阶段该做什么分析了,赶紧做,发现了问题或者潜在风险赶紧跟业务聊解决方案,这样才能将数据分析师的价值发挥到最大
如有问题,随时私信我。谢谢大家。
最后发布一个招聘贴,完美世界游戏招聘〔资深游戏数据分析师〕和〔资深游戏产品运营〕,有想法的小伙伴来私信联系我哦
这居然有人来问??现在的孩子都怎么了?
第一,你倒是喜欢人家,人家喜欢你吗?
第二,你倒是跟他上了一个高中。那到大学怎么办?万一他没考上大学,你是不是要跟他一起辍学?如果他考一个不好的大学,你是不是要放弃更好的大学跟他在一起?
第三,你跟他在一个高中又有什么意义?中学生就算你们互相喜欢,还不是分手。你们还能外面买套房去登记吗?年纪也不够啊。那既然大概率是三年以后就要分手,那你现在跟他在一个高中又有什么意义呢?就为了上学放学能够一起走?
第四,你看看你爸你妈差几岁。等你真的到了结婚的年纪,能和你结婚的女生现在估计还在上小学。世界那么大,出去多看看,一般来说大学毕业那年回过头去,你会发现当初的自己是多么幼稚。