百科问答小站 logo
百科问答小站 font logo



手机游戏《明日方舟》里的阿米娅到底是兔子还是驴? 第1页

  

user avatar   satan-94-5 网友的相关建议: 
      

生不了是骡子

生1到2个是驴

生一窝是兔子

多试几次排除偶然因素


user avatar   herobrine-74 网友的相关建议: 
      

来自B站评论区

大意如下:

跟她结婚。

#&*,[18+内容已遮盖],■■■然后○□☆以后

如果她不孕不育那就是骡子

如果她一胎生了一至两个那就是驴

如果一次下了一窝那就是兔子(咦动词不一样了)

可以重复操作排除偶然因素影响

无懈可击的方案

我室友听到这个:Σ(°Д°;你可做个人吧??!!


user avatar   si-da-wang-45 网友的相关建议: 
      

从前有一个二次元游戏角色阿米娅,她长了一双驴耳朵,为了不让人知道,总是戴着一顶大帽子。但是后来头发越来越长,为了修剪刘海,不得已找来了理发师。一个画师趁机威胁理发师:「你要是说出去,就杀了你。」

理发师答应了不会说出去。但是这件事儿憋在心里,总是不好受。理发师一天一天显得憔悴了。他的妻子说:「你要是有什么事情不想要人知道,就去山上挖个坑对着坑喊好了。」

理发师深表赞同。于是上山挖了个坑,对着里面喊道:「阿米娅长着驴耳朵!阿米娅长着驴耳朵!」喊完,心情舒坦多了。于是就心满意足得胜地走了。

冬去春来,在理发师挖开的坑中萌发了一颗种子,种子最终长成了一棵树。牧童用这棵树的树枝做了支牧笛,结果吹出来的全是「阿米娅长着驴耳朵!阿米娅长着驴耳朵!」

现在,全王国的人都知道,阿米娅长着一双驴耳朵了。


user avatar   hong-se-ling-xiu-si-da-lin 网友的相关建议: 
      

一说起驴,就不可避免的想到单核。


user avatar   yi-yiding 网友的相关建议: 
      

虽然我还在观望贵游,但是我怀疑你们歧视驴。


user avatar   huang-xi-jie-17 网友的相关建议: 
      

谢邀,看论文看累了,闲着没事,就搭了一个小型的数据集,训了一个分类器来解决这个问题,参考了kaggle知名比赛/项目 Dogs vs. Cats kaggle.com/c/dogs-vs-ca ,我们也来完成一个Donkeys vs. Rabbits的阿米娅二分类判别

先上结论吧,输入阿米娅的无背景(减少噪声干扰)官方原画,判别器得出的结论是:阿米娅有99.9%的可能是只驴,神经网络之所以能得出这个结论,我推测可能是因为对结果contribution最大的是阿米娅颜色的特征(donkey基本全是灰/黑暗色,而rabbit则是一半白色和一半灰黑色),当然,耳朵的长度,形状应该也对结果有影响

下面谈一下数据准备和网络结构吧,数据准备我使用了一个开源的爬虫工具 github.com//WuLC/Google,利用google图片url修改keyword的特性爬了2000张donkey和2000张rabbit(数据量比较小,毕竟是tiny dataset),遇到坏链/无法下载就跳过

       import os import json import time import logging import urllib.request import urllib.error from urllib.parse import urlparse  from multiprocessing import Pool from user_agent import generate_user_agent from selenium import webdriver from selenium.webdriver.common.keys import Keys   def get_image_links(main_keyword, supplemented_keywords, link_file_path, num_requested = 1000):      number_of_scrolls = int(num_requested / 400) + 1      # number_of_scrolls * 400 images will be opened in the browser      img_urls = set()     driver = webdriver.Firefox()     for i in range(len(supplemented_keywords)):         search_query = main_keyword + ' ' + supplemented_keywords[i]         url = "https://www.google.com/search?q="+search_query+"&source=lnms&tbm=isch"         driver.get(url)                  for _ in range(number_of_scrolls):             for __ in range(10):                 # multiple scrolls needed to show all 400 images                 driver.execute_script("window.scrollBy(0, 1000000)")                 time.sleep(2)             # to load next 400 images             time.sleep(5)             try:                 driver.find_element_by_xpath("//input[@value='Show more results']").click()             except Exception as e:                 print("Process-{0} reach the end of page or get the maximum number of requested images".format(main_keyword))                 break          # imges = driver.find_elements_by_xpath('//div[@class="rg_meta"]') # not working anymore         imges = driver.find_elements_by_xpath('//div[contains(@class,"rg_meta")]')         for img in imges:             img_url = json.loads(img.get_attribute('innerHTML'))["ou"]             # img_type = json.loads(img.get_attribute('innerHTML'))["ity"]             img_urls.add(img_url)         print('Process-{0} add keyword {1} , got {2} image urls so far'.format(main_keyword, supplemented_keywords[i], len(img_urls)))     print('Process-{0} totally get {1} images'.format(main_keyword, len(img_urls)))     driver.quit()      with open(link_file_path, 'w') as wf:         for url in img_urls:             wf.write(url +'
')     print('Store all the links in file {0}'.format(link_file_path))   def download_images(link_file_path, download_dir, log_dir):      print('Start downloading with link file {0}..........'.format(link_file_path))     if not os.path.exists(log_dir):         os.makedirs(log_dir)     main_keyword = link_file_path.split('/')[-1]     log_file = log_dir + 'download_selenium_{0}.log'.format(main_keyword)     logging.basicConfig(level=logging.DEBUG, filename=log_file, filemode="a+", format="%(asctime)-15s %(levelname)-8s  %(message)s")     img_dir = download_dir + main_keyword + '/'     count = 0     headers = {}     if not os.path.exists(img_dir):         os.makedirs(img_dir)     # start to download images     with open(link_file_path, 'r') as rf:         for link in rf:             try:                 o = urlparse(link)                 ref = o.scheme + '://' + o.hostname                 #ref = 'https://www.google.com'                 ua = generate_user_agent()                 headers['User-Agent'] = ua                 headers['referer'] = ref                 print('
{0}
{1}
{2}'.format(link.strip(), ref, ua))                 req = urllib.request.Request(link.strip(), headers = headers)                 response = urllib.request.urlopen(req, timeout = 30)                 data = response.read()                 file_path = img_dir + '{0}.jpg'.format(count)                 with open(file_path,'wb') as wf:                     wf.write(data)                 print('Process-{0} download image {1}/{2}.jpg'.format(main_keyword, main_keyword, count))                 count += 1                 if count % 10 == 0:                     print('Process-{0} is sleeping'.format(main_keyword))                     time.sleep(5)              except urllib.error.URLError as e:                 print('URLError')                 logging.error('URLError while downloading image {0}reason:{1}'.format(link, e.reason))                 continue             except urllib.error.HTTPError as e:                 print('HTTPError')                 logging.error('HTTPError while downloading image {0}http code {1}, reason:{2}'.format(link, e.code, e.reason))                 continue             except Exception as e:                 print('Unexpected Error')                 logging.error('Unexpeted error while downloading image {0}error type:{1}, args:{2}'.format(link, type(e), e.args))                 continue   if __name__ == "__main__":      list_keyword = 'rabbit'     main_keywords = [list_keyword]     supplemented_keywords = ['']      download_dir = './data/'     link_files_dir = './link_files/'     log_dir = './logs/'      max_pic_num = 2000      # multiple processes     p = Pool(1) # default number of process is the number of cores of your CPU, change it by yourself     for keyword in main_keywords:         p.apply_async(get_image_links, args=(keyword, supplemented_keywords, link_files_dir + keyword, max_pic_num))     p.close()     p.join()     print('Fininsh getting all image links')               p = Pool() # default number of process is the number of cores of your CPU, change it by yourself     for keyword in main_keywords:         p.apply_async(download_images, args=(link_files_dir + keyword, download_dir, log_dir))     p.close()     p.join()     print('Finish downloading all images')     

网络懒得自己搭了,用了kaggle里面一个现成的,改了一下dataloader,结构就是三层卷积加一层fc,中间用到了BN和dropout,代码就不放了,可以自行去kaggle下载,后面附上了model的summary,因为数据量不大,所以训了100个epoch,很快训好,train和val的loss都不错,infer的结果见开头

       _________________________________________________________________ Layer (type)                 Output Shape              Param #    ================================================================= conv2d_1 (Conv2D)            (None, 126, 126, 32)      896        _________________________________________________________________ batch_normalization_1 (Batch (None, 126, 126, 32)      128        _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 63, 63, 32)        0          _________________________________________________________________ dropout_1 (Dropout)          (None, 63, 63, 32)        0          _________________________________________________________________ conv2d_2 (Conv2D)            (None, 61, 61, 64)        18496      _________________________________________________________________ batch_normalization_2 (Batch (None, 61, 61, 64)        256        _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (None, 30, 30, 64)        0          _________________________________________________________________ dropout_2 (Dropout)          (None, 30, 30, 64)        0          _________________________________________________________________ conv2d_3 (Conv2D)            (None, 28, 28, 128)       73856      _________________________________________________________________ batch_normalization_3 (Batch (None, 28, 28, 128)       512        _________________________________________________________________ max_pooling2d_3 (MaxPooling2 (None, 14, 14, 128)       0          _________________________________________________________________ dropout_3 (Dropout)          (None, 14, 14, 128)       0          _________________________________________________________________ flatten_1 (Flatten)          (None, 25088)             0          _________________________________________________________________ dense_1 (Dense)              (None, 512)               12845568   _________________________________________________________________ batch_normalization_4 (Batch (None, 512)               2048       _________________________________________________________________ dropout_4 (Dropout)          (None, 512)               0          _________________________________________________________________ dense_2 (Dense)              (None, 1)                 513        ================================================================= Total params: 12,942,273 Trainable params: 12,940,801 Non-trainable params: 1,472 _________________________________________________________________     

Reference:

[1] GoogleImagesDownloader github.com//WuLC/Google

[2] keras-cnn-dog-or-cat-classification kaggle.com/uysimty/kera




  

相关话题

  电视剧《激战江南》中的「高级特工穿山甲」这个梗为什么会走红? 
  与动漫相比,真实的日本高中是什么样子的? 
  如何评价吴亦凡的新歌《大碗宽面》? 
  如何评价动画《鬼灭之刃》剧场版《无限列车》? 
  如何看待B站上的中外情侣,中男外女基本都会中文,中女外男的外国人基本都不会中文。? 
  如何看待B站上的GTAOL刷钱有理? 
  《龙珠》未来篇里面的悟饭为什么那么弱打不过人造人? 
  虚拟偶像团体asoul五位成员的二次元浓度如何? 
  如何看待少年的姐控现象? 
  如何评价《逆转世界的电池少女》的背景故事? 

前一个讨论
如何看待江南把人气角色楚子航写受伤这件事(根本没死)?
下一个讨论
街景地图不泄密吗?如何解决这个问题?





© 2024-12-25 - tinynew.org. All Rights Reserved.
© 2024-12-25 - tinynew.org. 保留所有权利