百科问答小站 logo
百科问答小站 font logo



BERT模型可以使用无监督的方法做文本相似度任务吗? 第1页

  

user avatar   cai-jian-wei-47 网友的相关建议: 
      

语义相似度的方法,一般包括:不交互的方法(query和doc各自构建embedding,再由匹配层计算相似度)、交互的方法(基于query和doc的二维相似度矩阵,构建交互的embedding,直接计算相似度)。从训练的loss或者语义相似度的效果来看,交互的方法都会比不交互的方法好。

不过工业界为了构建embedding,正常会使用第一种方法,主要是为了利用faiss或者nsg等,更方便的做大规模语义向量的检索。第二种方法,会用于精排序。

拿bert做语义相似度的任务,可以考虑以下两方面:

1)复用了预训练模型学习到外部语料的表征(直接使用开源bert模型的cls embedding计算出来的pooled output效果会比较差;主要是数据的差异性导致的,因此需要做fine-tune)。正常gpu充裕可以做一版特定领域数据的预训练模型,学习到领域数据的表征

2)在下游的语义匹配任务,做fine-tune。利用了bert模型里面的transformer结构,相比以往的lstm或者cnn模型,对文本的表征更好。


user avatar   su-jian-lin-22 网友的相关建议: 
      

女王:求求题主放过我,我可不敢有什么政绩。。。




  

相关话题

  有哪些深度学习效果不如传统方法的经典案例? 
  上学和读书有什么区别? 
  如何评价 CVPR 2020的论文接收结果?有哪些亮点论文? 
  我应该从计算机视觉回到做FPGA 吗? 
  深度学习火热兴起后,隐马尔可夫模型(HMM)还有何独到之处,是不是几乎可被深度学习模型给替代了? 
  graph convolutional network有什么比较好的应用task? 
  NLP领域,你推荐哪些综述性的文章? 
  基于深度卷积神经网络进行人脸识别的原理是什么? 
  如果有第谷的数据,现在的机器学习,深度学习有办法学出开普勒三定律吗? 
  请问机器学习中的预测与决策的区别是什么,他们的界限在哪里呢? 

前一个讨论
男方家境不好真的不能嫁嘛??
下一个讨论
在优化问题里,强化学习相比启发式搜索算法有什么好处?





© 2025-04-27 - tinynew.org. All Rights Reserved.
© 2025-04-27 - tinynew.org. 保留所有权利