百科问答小站 logo
百科问答小站 font logo



如何理解Inductive bias? 第1页

  

user avatar   tylin98 网友的相关建议: 
      

归纳偏置在机器学习中是一种很微妙的概念:在机器学习中,很多学习算法经常会对学习的问题做一些假设,这些假设就称为归纳偏置(Inductive Bias)。归纳偏置这个译名可能不能很好地帮助理解,不妨拆解开来看:归纳(Induction)是自然科学中常用的两大方法之一(归纳与演绎, induction and deduction),指的是从一些例子中寻找共性、泛化,形成一个比较通用的规则的过程;偏置(Bias)是指我们对模型的偏好。

因此,归纳偏置可以理解为,从现实生活中观察到的现象中归纳出一定的规则(heuristics),然后对模型做一定的约束,从而可以起到“模型选择”的作用,即从假设空间中选择出更符合现实规则的模型。其实,贝叶斯学习中的“先验(Prior)”这个叫法,可能比“归纳偏置”更直观一些。

归纳偏置在机器学习中几乎无处不可见。老生常谈的“奥卡姆剃刀”原理,即希望学习到的模型复杂度更低,就是一种归纳偏置。另外,还可以看见一些更强的一些假设:KNN中假设特征空间中相邻的样本倾向于属于同一类;SVM中假设好的分类器应该最大化类别边界距离;等等。

在深度学习方面也是一样。以神经网络为例,各式各样的网络结构/组件/机制往往就来源于归纳偏置。在卷积神经网络中,我们假设特征具有局部性(Locality)的特性,即当我们把相邻的一些特征放在一起,会更容易得到“解”;在循环神经网络中,我们假设每一时刻的计算依赖于历史计算结果;还有注意力机制,也是基于从人的直觉、生活经验归纳得到的规则。

在自然语言处理领域赫赫有名的word2vec,以及一些基于共现窗口的词嵌入方法,都是基于分布式假设:A word’s meaning is given by the words that frequently appear close-by. 这当然也可以看作是一种归纳偏置;一些自然语言理解的模型中加入解析树,也可以类似地理解。都是为了选择“更好”的模型




  

相关话题

  如果智能机器人真的大批量取代人工,那真的会失业么? 
  如何看待知乎的AI答主「四十二」?人工智能有可能理解生命的意义是什么吗? 
  除了深度神经网络已经实现的特性以外,大脑还有哪些特性是值得机器学习领域借鉴的? 
  神经网络中,bias有什么用,为什么要设置bias,当加权和大于某值时,激活才有意义? 
  最有可能引领第四次工业革命的是哪种技术? 
  计算机视觉是否已经进入瓶颈期? 
  如何评价陈天奇团队新开源的TVM? 
  为什么这么多 NLP 大牛硕士毕业去企业不留在学术界? 
  实体提取任务中使用BERT-CRF时,CRF根据数据统计可以得到转移概率,为啥还要训练呢? 
  高斯过程的kernel构成的矩阵为何叫协方差矩阵而不是相关系数矩阵? 

前一个讨论
今天看到“人工智能没有欲望,只有人工智能管理人类社会才能实现大同社会”这句话,想听听大家怎么说?
下一个讨论
为什么CPU主频一般都比FPGA快,但是却说FPGA可以帮助CPU加速?





© 2024-11-24 - tinynew.org. All Rights Reserved.
© 2024-11-24 - tinynew.org. 保留所有权利