因为训练的时候你没有跟网络说什么样的东西应该不确定。
你只给了确定的label,要么是[0,1]要么是[1,0],那网络就只会出接近这两个值的输出。
-----------------分界线------------------
当然这背后是有数学原理的,二分类的softmax其实等价于sigmoid,如果一直给one-hot的标签,在训练集几乎都能分正确的前提下,网络趋向于将feature的norm无限拉长,sigmoid越来越接近0-1的阶跃函数,几乎所有样本的输出就都在接近0和接近1的位置,中间态几乎没有。
注意这里引入了一个假设,即“训练集几乎都能分正确”。如果你的训练集拟合得不好,你会发现输出0.3、0.5之类的样本的机会会大大增加。
-----------------分界线------------------
怎么告诉网络不确定性呢?
有两种方式:一种是soft label,即你直接就给部分样本[0.5, 0.5]的label;一种是noise label,就是你觉得不确定的东西,一会给0的label,一会给1的label。
这两种方式都可以起作用,当然第一种效果更好一些,网络有比较明确的目标,第二种方式在batch training下其实也是有效的,只是看起来比较奇怪。