百科问答小站 logo
百科问答小站 font logo



pytorch ddp训练中一个node fail,导致整个训练失败,有可能解决吗? 第1页

  

user avatar   liustein 网友的相关建议: 
      

其实我从来没有想过要去挽救一个挂掉的训练。。。毕竟人家要是挂了,还是要尽量搞清楚怎么回事。俗话说的好,如果你发现了一只蟑螂,一定在暗处还藏着一万只。。。所以,与其学习和蟑螂共存,不如把他干掉啊。

不过我还是挺好奇的,就搜索了一番,感觉有点价值,就稍微贡献一下我的搜索成果。

Torch Elastic自然是可以,一般做法是经常保存模型,然后出问题Torch Elastic会重启所有节点,重启的时候恢复之前保存的最近的模型和训练状态然后继续训练。

还有一个技巧是使用nccl的超时功能,如果什么都不做,nccl是没有超时功能的。但把NCCL_ASYNC_ERROR_HANDLING的环境变量设置成1,然后在初始化进程的时候这么设置:

       import torch.distributed as dist  dist.init_process_group(          backend=nccl,     timeout=timedelta(seconds=5) )     

nccl就会在节点超时5秒的时候抛出异常。nccl的超时功能加上Torch Elastic,就可以处理因为超时而挂掉的节点了。

一点微小的贡献哈


user avatar   xiaohuzc 网友的相关建议: 
      

补充一点:torch新出的Join可以处理DDP中数据不均匀的情况,本质上就是忽略那些已经join的node,所以可以在每个node中catch异常,发现异常可以提前join,也是一种处理方式吧。


user avatar   shaoziqi 网友的相关建议: 
      

Torch Elastic


user avatar   ding-ming-55-55 网友的相关建议: 
      

各种弹性训练适用范围有限。。。例如用zero之类的训练有点挂了神仙难救,还是勤存ckpt是王道。




  

相关话题

  CPU和GPU跑深度学习差别有多大? 
  如何使用 python 写一个简单的表达式解释器? 
  只有正样本和未标签数据的机器学习怎么做? 
  Python如何修改内置类型? 
  使用pytorch时,训练集数据太多达到上千万张,Dataloader加载很慢怎么办? 
  有谁照着论文把 AlphaGo 重现出来了? 
  了解/从事机器学习/深度学习系统相关的研究需要什么样的知识结构? 
  对于神经网络,硕士博士不需要弄明白原理,只需要应用,是这样吗? 
  使用强化学习解决实际问题时常常避不开环境模拟或者使用离线强化学习算法,两者分别有什么优缺点? 
  有什么深度学习数学基础书推荐? 

前一个讨论
什么叫文化素养?
下一个讨论
为什么说大模型训练很难?





© 2025-03-31 - tinynew.org. All Rights Reserved.
© 2025-03-31 - tinynew.org. 保留所有权利