关于实验管理,其他人的回答已经写得十分详细了。虽然我自己还是习惯直接Google Sheet然后在表格里的每一行记录【git commit hashcode】、【server name】、【pid】、【bash script to run exp】、【实验具体结果】、【notes】、【log position】、【ckpt position】,而且Google Sheet增加column以及合并格子用起来还是很flexible的。
这里我提一下其他方面的一些有助于提高效率的工具:
现在越来越多的论文标题(尤其是Deep Learning方向)都是 [model缩写]: [正经论文题目] 的格式,而且一个朗朗上口的名字确实有助于记忆与传播。
作为一个non-native speaker,写paper的时候词语搭配真是让人头秃。这个网站可以比较方便地找一些词语搭配。
LaTex如果所有公式都要自己手打还是很痛苦的。(虽然很多时候一篇Deep Learning方向的paper公式数量只有十个左右(这还是在强行加上LSTM等被翻来覆去写烂的公式的情况下))
这个网站不仅能很方便找到各种常用的 color schemes,而且都是 grayscale friendly and colorblind-friendly,对于paper里画图帮助比较大。
有的时候自己复现真是玄学,这个网站和搜索引擎 "[论文题目] site:http://github.com"配合使用即可。
暂时想到这么多,有空再更。
Update:
有的paper需要做一个video来介绍,对自己口语不是很有信心的话可以用G家的text2speech(这个领域Google应该是当之无愧的霸主),还能调节语速,非常贴心。
wandb,weights&bias,最近发现的一个神库。
深度学习实验结果保存与分析是最让我头疼的一件事情,每个实验要保存对应的log,training curve还有生成图片等等,光这些visualization就需要写很多重复的代码。跨设备的话还得把之前实验的记录都给拷到新设备去。
wandb这个库真是深得我心,只要几行代码就可以把每一次实验打包保存在云端,而且提供了自家的可视化接口,不用每次都自己写一个logger,也省掉了import matplotlib, tensorboard等一大堆重复堆积的代码块。
最关键的是,它是免费的:)
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 tinynews.org All Rights Reserved. 百科问答小站 版权所有