又是一个被刷屏的新闻,鉴于我本人并不是做这个方面的研究,没敢第一时间就回答这个问题。现在这个问题下各位大佬已经把这个实验说的很清楚了,我就随便写点吧~
首先还是把这张用了无数遍的标准模型的图再次放出来:
电子、 子都是标准模型中的基本粒子, 子的质量是电子的200多倍,除此之外,它们俩没有什么区别。(好多文章里说 子是电子的二表哥,我感觉说子是电子的爹可能更好一点,毕竟不是一代!)
子有磁矩,电子当然也有磁矩。磁矩的形式为:
,
其中 为电荷, 为粒子的质量, 为光速, 为自旋。其实这几个量并不重要,最有意思的是前面的那个系数 ,学名叫做“朗德g因子”。传统的狄拉克理论认为,
,
狄拉克理论是量子场论发展出来之前的一个“经典”理论。然而后来发展起来的量子场论认为,真空并不空!
一个静止的电子,看似岁月静好,但实则是风起云涌!
在电子的激发下,它周围的空间中会涌现出大量的正反粒子对,又在转瞬之间消失的无影无踪!
这样的过程被称为“虚过程”,也叫做“量子涨落”,其中被激发出来又转瞬即逝的粒子,也叫做“虚粒子”。
(上图[1])
虽然有一个“虚”字,但是影响却是实实在在的!
如果没有这些虚过程,那么 没有问题,但是正是由于这些虚过程的存在,使得 会偏离2,偏离的部分就叫做“反常磁矩”,并因此定义了
来表示其反常程度,这也是本次实验测量的物理量。
当然,不同粒子激发虚粒子的能力也不同,质量越大的粒子,就能激发越重的虚粒子,实际上,这种能力跟粒子质量的平方成正比,因此 子的激发能力是电子的40000多倍!
当然,激发能力弱,我们对电子反常磁矩的理论计算就会容易很多,因为只需要考虑很简单的激发情况就能保证足够的精度,目前,电子反常磁矩的理论计算值是[2]:
,
而实验测量结果为:
,
二者在小数点后第11位都保持相同!!!
这无疑是量子电动力学(量子场论版本的电磁理论)的巨大成功,这也使得量子电动力学成为人类有史以来最为精确的理论了(没有之一)。
然而,当计算 子的反常磁矩的时候就没有这么容易了,它周围会有更多更重的虚粒子被激发出来,对于电子没有什么影响的粒子,此时就变得很重要!
子反常磁矩的理论预测为:
而整合最新的数据后,实验结果为:
在小数点后第8位开始出现差距!这一差距让大家不得不认真对待。
我们先不去考虑可能的实验测量的不足,或者理论计算中可能的错误,而是看一下这个结果可能带来的意义,也就是新物理。正是看到了这一点,本次的结果才会引起物理学界的广泛关注。
可以说,标准模型是物理最伟大的成就之一,但是建立这么多年之后,人们也慢慢看腻了,实际上,目前大家普遍认为,标准模型并不“标准”,宇宙中还有新的现象没法解释,还有新的粒子没有被发现。
那么,超出标准模型的新物理、新粒子到底在哪呢?本次 子的结果或许能提供一定的指导。
上面说了, 子激发虚粒子的能力比电子强很多。原则上说,只要是自然界中存在的基本粒子,都会被激发,只是程度强弱的问题。而标准模型理论计算比实验小,就暗示自然界中还存在一些没有被发现的新粒子。
而对新粒子的探索也不完全是空穴来风。目前,根据天文学观测,宇宙中普通的可见物质,只占到了宇宙总成分的5%,另外还有27%的看不见摸不着的暗物质,以及68%左右的暗能量。
我们对暗物质的观测主要来自于天文观测中的引力效应,但是对于构成暗物质的粒子,也就是暗物质粒子,完全没有头绪。暗物质对普通物质没有明显的影响(除引力外),因此不参与电磁相互作用以及强相互作用,或许参与弱相互作用,也或许不参与。理论上会构建很多具体的模型来探讨暗物质可能的性质,甚至还会有引入第五种相互作用力!
对于新粒子的理论探索有很多,其中有一个大家比较熟悉的理论,超对称模型,是对标准模型的一个推广,认为标准模型中的每一个粒子都伴随着一个超对称粒子,由于宇宙演化过程中发生的某种对称性自发破缺,使得超对称粒子质量变得很重很重,因此很难被发现。
人们在太空中、地底下以及对撞机中,通过各种办法寻找超对称粒子、暗物质粒子的踪迹,但是遗憾的是,到目前为止,没有任何实验能够给出确凿的证据说这些粒子存在!
如果把这些信息都放到一起,就很容易理解物理学家们的兴奋了。此次 子的结果如果能够被确认,那么对于下一步高能物理的发展方向、探索超出标准模型的新物理提供重要指导。若有幸真的与暗物质能扯上关系,那么这将会大大增加我们对宇宙的认知,毕竟宇宙中暗物质的含量是普通可见物质的五倍还多!
对于这次本次测量的结果,以及理论与实验不断增加的精度,有人也提出了异议,认为这样高的精度是没有必要的。
但如果对物理学史有所有了解的话,就明白物理学中有不少重大发现都是源于精度的提高!或者说,源于理论与实验的不同!
实际上,当下和未来也有许多量需要进一步的精确测量:
(上图[4])
当然,理论与实验室相辅相成的。实验的精确测量离不开理论精确计算的验证,而理论的结果又离不开实验的验证。真理永远在小数点后一位。实际上,理论的精确计算并不容易,涉及到的精度越高,所需要的算力也就越大。目前这种级别的计算是需要使用超级计算机的,而且计算时间也要按月来算。
4、总结
这次结果不是最新的,实际上20年前就已经发现了 子反常磁矩理论与实验的差距,而此次的数据进一步强化了这个结果。但是,现在还不能过于兴奋,因为毕竟结果还没有到5 ,实验结果出错的概率并不太小,还需要耐心等待费米实验室未来几年进一步的结果。如果被确认,到那时再兴奋也不迟。
外行,作为粒子物理爱好者,很希望看到新物理。不过对比今天同一天的两篇新文章,感觉怎么辣么巧呢 【希望是我多氯了 ^_^】
实验组的 PRL 文章:
理论组的 Nature 文章:
理论组的文章去年就挂 arxiv 上了,实验的文章在引文 [12-24] 里一笔带过
其中理论组的预印本文章为参考文献 [23],即实验组假装没看见(或者真没看见)理论组的文章得到的理论值是和文中引用的不一样的,而是和之前实验更接近。要是理论组的文章已经发了 Nature,恐怕就不容易没看见了。
貌似两篇文章同时发表,可以得到最好的公众效果:
我是提问者,补充一张外国有人做的科普这个结果的动漫图,来源于这个网站:https://physics.aps.org/articles/v14/47
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 tinynews.org All Rights Reserved. 百科问答小站 版权所有