百科问答小站 logo
百科问答小站 font logo



为何说银河系的中央是巨大的黑洞? 第1页

  

user avatar   zha-wei-ye-xiao-chou 网友的相关建议: 
      

试着答一下。

第一个问题:银河系是绕着中心黑洞旋转吗?

答案显然“是”。

但又“不是”。

为什么说是?

因为超大质量黑洞SgrA*就处在银河系中心位置,从几何学的角度说,整个星系确实就是在绕着它旋转,所以说“是”。

严格地讲,sgrA*和“银河系动力学中心”并不完全重合。具体原因需要进一步观测。也许银心存在着一个巨大的黑洞群,也许单纯是银河系恒星质量分布不均造成的。

为什么说“不是”?

sgr A*的质量只有四百万个太阳质量,而整个银河系保守来说也有两千亿颗恒星,即中心黑洞质量只占整个银河系总质量的0.00002。显然,银河系并不是因为黑洞的引力才聚在一起旋转的 。

很多人对黑洞有误解,认为只要是黑洞,它的引力就是无限大。其实引力无限大的地方只有黑洞中心的奇点,其他区域和一个等质量恒星产生的引力一模一样。换句话说,如果太阳变成了黑洞,它对地球轨道也没有任何影响。我们不会被吸进去,也不会被抛出去,一年还是365天。

所以,只有400万太阳质量的sgr A*产生的引力并不大,其引力作用范围大概只有太阳引力范围的2000倍左右。在银河系的尺度上,这个距离几乎可以忽略不计。因此,“星系中心存在黑洞”和“星系的运行与结构”并没有直接联系。

那么是什么主导了千亿颗恒星绕着银心旋转?

答案是“不知道”。


现在人类对天体运行的认识都是建立在“引力系统”的基础上。对于引力不起决定性作用的大尺度天体结构,人类只能边观测边脑补。

比如强行把星系纳入引力系统---这就是暗物质假说;

质量不够,幽灵来凑。

比如强行把旋转解释为原始星云的惯性--这就是起源假说;

上帝打了个响指,银河系就转了几十亿年。

还有把星系强行纳入膜理论的…

遇事不决加一维。

总之,目前并没有公认的星系运行理论出现,人类差不多对此一无所知。我们唯一知道的,就是大尺度的天体运动,真的和黑洞没太大关系。


第二个问题:怎么找到的银心黑洞?

其他高票答案已经解释得很好了。原理就是根据轨道分析引力:如果一堆恒星绕着一个看不见的点运动,而计算出来的点质量又非常大,那么这个点八成就是个黑洞。

至于它是不是真的就是个黑洞,这谁也不知道。

只能说按照人类现有对宇宙的理解,除了黑洞也没有别的天体可以往那儿摆了。

随着测量技术的进步,人类发现大多数大型星系的中心都存在一个超大质量黑洞。那些中心没有黑洞的星系,都是规模不大的矮星系或潮汐裂解后的星系残骸。从这个观测结果反推的话,可以说银河系黑洞是“不用找”的。因为银河系的规模足够大,所以它的中心必然存在黑洞。


以上。


user avatar   hu-xiao-23-94 网友的相关建议: 
      

尽管在物理上,黑洞有种种“神奇”的性质,但是对于天文学家来说,确认黑洞存在的最好办法无非是找到大量质量聚集在小空间内的直接或者间接证据罢了。

刚上大学的时候,我第一听说了这个长达十年的观测成果(从95年开始到05年paper发表

Stellar Orbits around the Galactic Center Black Hole

,实际观测时间应该在8年左右),当时就深深的为这种现实中的十年磨一剑所拜倒(现在则为那个组里的PhD们感到黯然神伤)。

UCLA的这个银(河系中)心组,从95年开始用Keck望远镜(当时世界上最大的光学望远镜,主反射面直径10米,位于夏威夷的Mauna Kea山巅)对银河系中心的人马座A* X射线源附近的恒星进行跟踪观测。说起来容易,实际上银河系中央的的恒星密度非常高,再加上前景恒星的影响,实际得到的原始观测图像差不多是下图(a)中的样子(非常短的曝光,只有0.13秒):(这幅图取自这个组98年的paper,

High Proper-Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Super

图(a)中标注出来的四个16**是很亮的前景星(这几幅图里都是越黑代表实际越亮,据说可以省墨,但是在CRT时代却会影响显示器寿命),对每幅图像进行去暗场,减Bias以及平场之后,把很多这样的短曝光图像进行叠加(原始论文里叫shift and add,本人不做观测所以也不太了解具体过程,询问了系里的师兄之后,知道基本过程就是取一个亮星作为参照,并假设在曝光时间内大气的影响基本是朝同一个方向的,把N张图片进行不同位移的叠加,得到的亮星图像最亮的时候就认为基本消除了大气抖动,这个方法和自适应光学结合之后可以得到非常高的分辨率)那些恒星的所在的视场,只有1*1个角秒大小,放大并用高通滤波去掉前景星的光晕之后,就可以仔细研究这些小黑点啦。

这里科普一下点扩散函数(point spread function,PSF),由于光的衍射,以及光学系统本身的像差,导致理想点源在成像元件上并不是一个完美的点,这种大型望远镜通常像差很小,如果不考虑大气层的影响,一般的PSF很接近理想的艾里斑:

于是大家可以明白为何亮的星星看起来更大了:虽然艾里斑的理论尺寸是一样的,但是亮星的PSF即使在边缘也有足够的亮度让CCD感光,而暗星就只有中间那个“尖顶”可以让CCD检测到。

在知道光学系统的PSF之后,就可以用它和处理过的图像拟合,得到这些“小黑点”中心的准确位置,如果这些恒星不是高速自转导致变成椭圆的话,图像中心就可以认为是恒星的质心了。

最后假设有一个点质量源位于Sgr A*,用不同时刻恒星的位置开始拟合轨道:

如果下面这个gif能动的话:



Black Holes

05年的结果表明,这些恒星周期最短的只有不到20年,最快的一颗在近拱点的速度大约有10000km/s,也就是光速的3%!而中央区域有大约四百万太阳质量的物质集中在半径45AU(差不多是冥王星的轨道大小)的范围内。虽然依然不是黑洞存在的直接证据,但的确很难想象太阳系里挤进四百万个太阳的情形——这么多的质量集中在如此小得范围内,除了黑洞,别的都很难稳定存在啊。

最近这个组又发现了周期更小的恒星S0-102,绕“黑洞”跑完一圈只要十年:

UCLA Galactic Center Group

当然,45AU似乎还是个很大的范围,前面的回答有人提到Sgr A*是一个强射电源,这意味着我们可以用射电望远镜进行分辨率极高的观测。目前利用甚长基线干涉(VLBI,用多台相距很远的射电望远镜组成干涉阵列,从分辨率角度相当于增大望远镜口径,提高角分辨率。射电因为频率较低,所以可以先把电波记录下来再进行干涉处理,所以可以全球联动。光学波段就只能靠光纤实时干涉了,限制了大小,一般也就同一个天文台的几个望远镜可以这样搞)得到这个射电源的大小不超过37微角秒,差不多相当于理论上视界大小的4倍,对应的实际大小是0.3AU。这就是说,我们需要把四百万个太阳质量集中到水星轨道以内!

当然我很期待视界望远镜(Event Horizen Telescope)的结果啦,真的做到那么高的分辨率,想想就有点小激动哦!

这么大质量的高密度天体,目前还真的只有黑洞能解释呢。什么中子星白矮星都是“长”不到那么大得,真有那么大,核心即使是中子简并压也撑不住,只会继续坍缩,要是没有新的对抗压力的机制冒出来的话,就只能变成黑洞了。




  

相关话题

  光从恒星中央抵达表面需要多久? 
  怎么读懂中国古代地方志中的“星野”? 
  是否有些太阳光线,从太阳诞生时就存在,直到现在还在太阳肚子里,没有出来? 
  宇宙里面有这么多天体,为何我们仍然能够计算天体的运动轨道? 
  看到一个帖子说卫星轨道不符合开普勒定律,牛顿定律,请问实际中卫星轨道是如何计算的呢? 
  农历为什么还没有彻底废止? 
  黑洞是不是被证实了? 
  如果用一根很长的绳子,在黑洞视界外安全的位置伸进黑洞里,再往回拉会发生什么? 
  天鹅座万年前的讯号是否有可能是地球万年前的文明通过某种跃迁到达某一个空间,然后发送出来的? 
  有没有史书记载古人对银河的描述? 

前一个讨论
酒是陈的香,那古墓里挖出的酒能喝吗?
下一个讨论
官方发通知称「开展网络游戏属地管理试点」,在符合条件的自贸试验区推进网络游戏审核试点,将带来哪些影响?





© 2025-01-27 - tinynew.org. All Rights Reserved.
© 2025-01-27 - tinynew.org. 保留所有权利