百科问答小站 logo
百科问答小站 font logo



验证集loss上升,准确率却上升该如何理解? 第1页

  

user avatar   virter 网友的相关建议: 
      

如题主自己回复,这种情况是由于模型得到的结果过于极端(自信)导致,上几张图,题主的情况应该和我下面情况差不多:

可以看到随着迭代增加ValidationLoss越来越大快跑飞了,不过准确率却逐渐平稳变化不大。而且验证集的准确率最高点也出现在先下降后上升区间。实际上准确率最高点(10 epoch左右)的预测结果是这样的:

而训练200 epoch后的预测结果是这样的:

可以明显看出训练200轮后结果趋于极端,而这些极端的负面Loss拉大了总体Loss导致验证集Loss飙升。出现这种情况大多是训练集验证集数据分布不一致,或者训练集过小,未包含验证集中所有情况,也就是过拟合导致的。而解决这种现象可以尝试以下几种策略:

  1. 增加训练样本
  2. 增加正则项系数权重,减小过拟合
  3. 加入早停机制,ValLoss上升几个epoch直接停止
  4. 采用Focal Loss
  5. 加入Label Smoothing

不过个人感觉主要还是增加训练样本比较靠谱..而且不用太关心ValLoss,关注下ValAccuracy就好。我的这个实验虽然只训练10个epoch在验证集上的准确率高且ValLoss小,但在测试集上结果是巨差的,而训练200个epoch的模型ValLoss虽然巨高但测试集效果还不错。




  

相关话题

  如何看待多模态transformer,是否会成为多模态领域的主流? 
  自然语言处理是计算机实现通用人工智能的最难挑战吗? 
  transformer中的Q,K,V到底是什么? 
  BERT可以用于文本聚类吗? 
  2020到2021年小样本学习取得重大进展了吗? 
  什么时候对数据进行[0,1]归一化,什么时候[-1,1]归一化,二者分别在什么场景? 
  神经网络中如果一个重要特征C等于特征A+特征B(算数意义上的相加),选特征的时候还有必要选特征C吗? 
  2017年1月18日Facebook发行的PyTorch相比TensorFlow、MXNet有何优势? 
  对神经网络某一层做了小改进,效果却提升显著,可以发论文吗? 
  pytorch 的高层库ignite怎么样? 

前一个讨论
为什么学习深度学习感觉无法入门?
下一个讨论
联邦学习/联盟学习 (Federated Learning) 的发展现状及前景如何?





© 2024-11-25 - tinynew.org. All Rights Reserved.
© 2024-11-25 - tinynew.org. 保留所有权利