百科问答小站 logo
百科问答小站 font logo



NLP领域,你推荐哪些综述性的文章? 第1页

  

user avatar   debuluoyi_AI 网友的相关建议: 
      

谢邀。比较成熟的 子领域就不说了,这里主要介绍NLP领域内几个尚需继续更好地解决的子领域和一些较新较好的综述文.

1.零样本学习

这个其实不管是CV还是NLP领域其实都在研究,也都待进一步解决。强烈推荐 2019年来自新加坡南洋理工大学的综述长文:

Wei Wang, Vincent W. Zheng, Han Yu, and Chunyan Miao.(2019). A Survey of Zero-Shot Learning: Settings, Methods, and Applications. ACM Trans. Intell. Syst. Technol.10, 2, Article 13 (January 2019), 37 pages.

本人自己也写过一篇零样本的综述文章,可以参考下。(一种解决范式):

2 小样本学习

推荐 来自港科大和第四范式的Few-shot learning综述长文:Generalizing from a Few Examples: A Survey on Few-Shot Learning

】最近又看到几篇新综述 感觉很好,记录分享一下:

Qi, G. J., & Luo, J. (2019). Small data challenges in big data era: A survey of recent progress on unsupervised and semi-supervised methods.arXiv preprint arXiv:1903.11260.

3.迁移学习

推荐 迁移学习领域最具代表性的综述是A survey on transfer learning,杨强老师署名的论文,虽然比较早,发表于2009-2010年,对迁移学习进行了比较权威的定义。

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359.

另外还有一些比较新的综述Latest survey,在这里随手介绍几篇

[1] 2019 一篇新survey:Transfer Adaptation Learning: A Decade Survey

Zhang, L. (2019). Transfer Adaptation Learning: A Decade Survey. arXiv preprint arXiv:1903.04687.

[2] 2018 一篇迁移度量学习的综述: Transfer Metric Learning: Algorithms, Applications and Outlooks

Luo, Y., Wen, Y., Duan, L., & Tao, D. (2018). Transfer metric learning: Algorithms, applications and outlooks. arXiv preprint arXiv:1810.03944.

另外这个领域 戴老板的论文也是非常有必要读的(非综述,个人强推)

[3] 戴文渊. (2009). 基于实例和特征的迁移学习算法研究 (Doctoral dissertation, 上海: 上海交通大学).

4.弱监督学习

这个比较推荐 南京大学周志华老师 的综述论文

Zhou, Z. H. (2017). A brief introduction to weakly supervised learning. National Science Review, 5(1), 44-53.

5.预训练模型

2019 google的T5模型论文,把它当成综述来看就介绍的挺好:

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2019). Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683.

bert后还有一些改进模型比如华为刘群/百度的ERNIE,XLNet等相关非综述文章,可以自行阅读。

6 其他方向

还有一些比较新的不同方向的综述文:

[1] 注意力机制:Hu, D. (2019, September). An introductory survey on attention mechanisms in nlp problems. In Proceedings of SAI Intelligent Systems Conference (pp. 432-448). Springer, Cham.

[2] Elvis Saravia and Soujanya:PoriaElvis Saravia and Soujanya Poria:NLP方方面面都有涉及,颇有一些横贯全局的意思。

网址:


这里只是分不同研究方向列举了一些,其余相关论文可以参考本文文章:

zhuanlan.zhihu.com/p/91

================================================

增补一些20200419:

【新7】weakly-supervised Learning

1) Zhi-Hua Zhou, A brief introduction to weakly supervised learning, National Science Review, Volume 5, Issue 1, January 2018, Pages 44–53, doi.org/10.1093/nsr/nwx;

关于课程学习的文章:

2) Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML. pp. 41–48. ACM (2009)

3) Luo, B., Feng, Y., Wang, Z., Zhu, Z., Huang, S., Yan, R., & Zhao, D. (2017). Learning with noise: Enhance distantly supervised relation extraction with dynamic transition matrix. arXiv preprint arXiv:1705.03995.

4) Guo, S., Huang, W., Zhang, H., Zhuang, C., Dong, D., Scott, M. R., & Huang, D. (2018). Curriculumnet: Weakly supervised learning from large-scale web images. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 135-150).

【新8】阅读理解MRC

[1] 陈丹琦博士的毕业论文 Chen, D. (2018).Neural Reading Comprehension and Beyond(Doctoral dissertation, Stanford University).

[2] 来自国防科技大学的综述长文 Liu, S., Zhang, X., Zhang, S., Wang, H., & Zhang, W. (2019). Neural machine reading comprehension: Methods and trends.Applied Sciences,9(18), 3698.

更多可见:


user avatar   li-yin-qiao-6 网友的相关建议: 
      

女王:求求题主放过我,我可不敢有什么政绩。。。


user avatar   jxulie 网友的相关建议: 
      

女王:求求题主放过我,我可不敢有什么政绩。。。


user avatar   yihengshu 网友的相关建议: 
      

女王:求求题主放过我,我可不敢有什么政绩。。。




  

相关话题

  国内 top2 高校研一在读,为什么感觉深度学习越学越懵? 
  为什么编程语言语法的设计不往缩小与自然语言的差别的方向发展,或者说在这个方向发展得这么慢呢? 
  如何评价生成模型框架 ZhuSuan? 
  用于数据挖掘的聚类算法有哪些,各有何优势? 
  2020年,多标签学习(multi-label)有了哪些新的进展? 
  因果推断会是下一个AI热潮吗? 
  深度学习火热兴起后,隐马尔可夫模型(HMM)还有何独到之处,是不是几乎可被深度学习模型给替代了? 
  大家推荐一下,哪些学校的导师有在做量化交易、股票预测的? 
  GAN:固定训练好的判别器网络,去指导训练生成器为什么不可以? 
  了解/从事机器学习/深度学习系统相关的研究需要什么样的知识结构? 

前一个讨论
为什么国家将加快人工智能研究生培养?又为什么很多研究生评论人工智能是个大坑呢?
下一个讨论
考研政治出题组会关心肖秀荣预测卷的重合度吗?





© 2024-12-22 - tinynew.org. All Rights Reserved.
© 2024-12-22 - tinynew.org. 保留所有权利