百科问答小站 logo
百科问答小站 font logo



Partial Multi-Label Learning是什么?它的发展史又是怎样的?最新的进展如何? 第1页

  

user avatar   xie-niu-nai-4 网友的相关建议: 
      

谢邀~

硕士阶段正好是做这个topic的,来总结一下。有偏颇之处,欢迎指正。

首先介绍一下偏多标记学习框架。

偏多标记学习框架

在传统的监督学习中,有一个输入空间,还有一个输出空间(目标空间)。我们的目标是在从这两个空间独立同分布采样得到的训练集上,通过监督学习算法学习一个分类模型,该模型能准确地预测未见样本所属的类别(标记)。

从上述过程我们可以看出,监督信息是进行有效学习的关键因素。这里的监督信息通常意味着强监督信息,即,1)标记信息充足;2)标记信息唯一;3)标记信息明确。在强监督信息的假设下,通过学习,往往能获得一个泛化性能较强的模型。然而,在实际应用中,由于一些客观因素(如,资源受限,环境制约等)因素,我们往往难以获得强监督信息,有的仅仅是弱监督信息。这时问题就来了,在仅基于弱监督信息的情况下,我们是否依然能通过学习得到一个好的模型。

为了解决这个问题,各路大牛提出了多种弱监督学习框架,包括半监督学习[1],多标记学习[2]以及偏标记学习[3]等等。这些学习框架分别违背了上述强监督信息中提及的三点假设,也就是标注信息不充足标注信息不唯一,以及标注信息有歧义。在现实场景中,实际的任务可能要更复杂,例如,当标记信息既不唯一又含有歧义,我们应当如何进行学习?为了解决这样的问题,我们提出了偏多标记学习框架(Partial Multi-label Learning, PML)。

首先来看一个现实场景中的例子,在众包平台上,多个标注者可能同时标注同一张图片,他们标注的并集就构成了候选标记集合,该集合既包含相关标记又包含无关标记(也称噪声标记)。如在图3中,虚线上面的是相关标记,虚线下面的是噪声标记(在训练阶段,并不知道哪些是相关标记)。

为了解决该问题,我们提出了一种新型弱监督学习框架,偏多标记学习。在偏多标记学习中,每个样本与一候选标记集相关联,该集合包含以下监督信息:

  • 候选集既包含相关标记也包含无关标记;
  • 候选集包含至少一个相关标记,但数目未知;
  • 候选集不包含的标记是无关标记。

偏标记学习方法

先讲这些,有空来更新我们提出的一些方法~

PS:最近太忙了,可能得过段时间再更新^-^

[1] Semi-supervised learning literature survey.

[2] A review on multi-label learning algorithms.

[3] Learning from partial labels.


user avatar   hbxiong 网友的相关建议: 
      

可以参考这个问题部分标签学习和缺失标签学习到底什么异同?

以及我之前的回答:

部分标签学习和缺失标签学习到底什么异同? - 皓波的回答 - 知乎 zhihu.com/question/4188

还可以参考我们在多标签学习的最新综述《The Emerging Trends of Multi-Label Learning》,里面也有对PML的介绍,

Arxiv地址:arxiv.org/abs/2011.1119

知乎:




  

相关话题

  什么是反事实分析呀? 
  你所在的研究领域里,有哪些工作的结果虽然不是造假,但是是精挑细选出来的? 
  2020到2021年小样本学习取得重大进展了吗? 
  机器学习小白来提问:关于联邦学习FedAVG和FedSGD的问题? 
  机器学习里面的流形都是怎么用的? 
  特征工程中的「归一化」有什么作用? 
  有哪些比较好的机器学习、数据挖掘、计算机视觉的订阅号、微博或者是论坛? 
  机器学习的理论方向 PhD 是否真的会接触那么多现代数学(黎曼几何、代数拓扑之类)? 
  大四年级,完全没接触过高数,目前对机器学习产生浓厚兴趣,该如何学习数学? 
  当前人工智能特别是深度学习最前沿的研究方向是什么? 

前一个讨论
导师要抢我的一作,我该怎么办?
下一个讨论
如何看待上海市科委、中科院上海有机所和观视频联合制作的科普微电影《无处不在的手性之有机师姐》?





© 2024-11-24 - tinynew.org. All Rights Reserved.
© 2024-11-24 - tinynew.org. 保留所有权利