百科问答小站 logo
百科问答小站 font logo



人工智能能否取代化学专业? 第1页

  

user avatar   huang-yike-3-71 网友的相关建议: 
      

这是个很好的问题,也是之前我有意留给每个人让他们自己去思考的问题。

一个行业是否会被AI取代的问题,从根源来说应该归结到该行业中人脑的工作方式是否完全可以被AI代劳的问题。

就原本知识关联错综复杂的基础学科来说,现阶段的AI,这是不可能的。这种不可能并不体现在AI对于既有现象的学习和推断,或者既有知识的学习、收集和print,而是(对于AI来说地)看似毫无关联的“训练集”之间的注意力快速迁移和推断。这种差别不是应该通过无限高的算力去掩盖的,而是对当前AI的结构提出了更严格的要求。

人在有一定知识基础的情况下可以直接学习抽象理论,之后发现现象之后可以想到这种理论,并且直接尝试使用抽象理论去建模和理解——这是AI训练集有限情况下难以做到的:这个过程涉及现象的抽象(AND/OR)建模,抽象后高速编码、知识(理论、物理图像)在抽象层次索引化的检索与匹配等等。理论本身可以穿梭于各种现象之间,或者说各种训练集之间。

对AI发展来说,

多学科综合的,具有高效检索能力、可抽象编码、具有推断能力、可更新编码方式(编码方式可自主迭代)的专家系统,in demand。

一个对象的多套先验(但对于知识学习是后验)编码方式(从上面的专家系统中得到的),in demand。

(从上到下)物理图像的深刻理解(深度编码)与(从下到上)快速实例化、把理论/物理图像作为反编译器进行现象的逆向工程,其重要性不仅体现在学习上,也体现在这或许是唯一的人脑可以战胜AI的希望这件事情上。

所以学习理论知识和理解物理图像很重要,因为这直接决定了所做研究的工作的层次高低,与认识自己研究方向的格局,最后才是,这种工作会不会最后被AI取代。

而问题中描述的“重复性”,大多数人苦“重复性”久矣,正是化学学科的最严重问题(我的意思是如果化学学科让人以为“重复”是基础研究的最大最critical的问题,认为是AI战胜人类的唯一路径,那才是最大最严重的问题):淹没在树林中而根本不得“science”之道,不停地做一些找规律、沉迷于控制变量的低级“思考”。

Study or die. 这个阶段的AI能有什么坏心眼呢?谁不学习、不深度思考,那就革了他的命。




  

相关话题

  ICML 2018 有哪些值得关注的亮点? 
  这样是不是就可以把人类的所有图像内容穷举出来了? 
  如何评价深度学习相关顶级期刊论文难复现的问题? 
  如何评价知乎想法中「人工智能是否能做艺术创新」这一场论战? 
  这一波人工智能泡沫将会怎么破灭? 
  小米、特斯拉、小鹏先后宣布研发机器人,现代汽车收购波士顿动力,车企纷纷布局机器人领域是趋势还是噱头? 
  大四年级,完全没接触过高数,目前对机器学习产生浓厚兴趣,该如何学习数学? 
  如何评价 DeepMind arXiv 论文公开的 AlphaZero 击败国际象棋和将棋的最强引擎? 
  商汤科技三年半巨亏 242 亿,为什么出现这么大的亏损?反映了 AI 行业的哪些问题? 
  有哪些适合化学狗穿的衣服? 

前一个讨论
30岁没有对象,是不是只能依赖相亲了?
下一个讨论
如何评价海洋纪录片《追踪海洋巨兽》?有哪些看点?





© 2024-12-22 - tinynew.org. All Rights Reserved.
© 2024-12-22 - tinynew.org. 保留所有权利