百科问答小站 logo
百科问答小站 font logo



相比于时下流行的机器学习方法(联接主义),传统的人工智能方法(符号主义)有什么独一无二的优势? 第1页

  

user avatar   david-dong-20 网友的相关建议: 
      

传统的方法,最大的好处是在于可解读性,原因过程结果都非常清楚,一切都是确定的。

即使有不确定的东西,我们也可以用某种方式建立模型,然后用相对确定的方式去推理验证,它的基础是非常稳固的。

相对来说,机器学习就容易陷入一种接近于玄学的范畴。在正统的计算机科学里面,其实是没有机器学习的,你看ACM里面就没有设置机器学习方面的Journal。当然,现在机器学习的效果实在太好,大家都要沾沾光,ACM也有这个方面的conference了,而且很多领域都涉及了不少机器学习的内容。

传统的方法,像符号主义,最大的问题还是在于它的计算复杂度太高了,而且模型本身也不容易建立。像现在联接主义的突破其实对于传统AI也是利好的,因为有些不好建模或者计算复杂度太高的部分可以用像NN这样的方式解决,最后综合出新的优秀方案。像DeepMind搞出的AlphaGo其实可以说就是这样一种东西。

可以做的新东西太多了,大家应该多多关注传统符号主义和联接主义的结合,引入语义进机器学习,或者引入机器学习作为传统AI的模块。说不定哪天我们就做出真正的强AI了 :)




  

相关话题

  如何看待 Nervana 被 Intel 收购? 
  如何看待 NIPS 2018 submission达到近 5000 篇? 
  我们到底该不该继续发展人工智能? 
  为何中国人迷恋吴恩达的机器学习课? 
  现在什么职业最容易被人工智能取代? 
  如何评价微软研究院开发的AI量化投资平台Qlib? 
  2025 年机器将替代 8000 多万工作岗位,哪些岗位可能会被替代?又可能创造什么新的机会? 
  基于深度学习的自然语言处理在 2016 年有哪些值得期待的发展? 
  2021年,作为算法工程师的你们会在CV业务落地上用Transformer吗? 
  什么是反事实分析呀? 

前一个讨论
为什么同样作为程序员,和BAT的差距就那么大呢?
下一个讨论
怎么避免写Java风格的Scala代码?





© 2025-03-26 - tinynew.org. All Rights Reserved.
© 2025-03-26 - tinynew.org. 保留所有权利