百科问答小站 logo
百科问答小站 font logo



你知道的有哪些很酷的化学知识? 第1页

  

user avatar   qian-zhang-26-83 网友的相关建议: 
      

当我们说到溶液,我们一般会想到哪些溶质呢?我们可能会想到离子化合物(食盐)或者分子化合物(葡萄糖),但是,今天想说的是,一个溶液的溶质还可以是电子

这就是溶剂化电子(solvated electron),第一次接触此概念是在Birch reduction里面,后来发现它也能用来还原氧化石墨烯,是一个非常奇特的还原剂。。

将碱金属投入液氨之中,碱金属失去一个s轨道的电子,形成稳定阳离子。而该电子迅速被周围的氨分子溶剂化并稳定住,形成了一个溶质为碱金属离子电子的深蓝色溶液体系。

重复一遍,这个溶液的深蓝色来自于被溶解的电子!说真的,在见到这玩意儿之前,我从来没想到电子也能作为溶质存在于一个溶液体系中。后来见到这个溶液的颜色之后,更加觉得真是酷死了。


再来张艺术一点的照片:

user avatar   chen-guang-58-96 网友的相关建议: 
      

论化学,我只服他


user avatar   Baiyhchembio 网友的相关建议: 
      

造轮子(非平面芳香环体系)啊!


牛津大学Harry L. Anderson,专注造轮子十年有余。


O’Sullivan M C, Sprafke J K, Kondratuk D V, et al. Vernier templating and synthesis of a 12-porphyrin nano-ring[J]. Nature, 2011, 469(7328): 72-75.


Langton M J, Matichak J D, Thompson A L, et al. Template-directed synthesis of π-conjugated porphyrin [2] rotaxanes and a [4] catenane based on a six-porphyrin nanoring[J]. Chemical Science, 2011, 2(10): 1897-1901.


Sprafke J K, Odell B, Claridge T D W, et al. All‐or‐Nothing Cooperative Self‐Assembly of an Annulene Sandwich[J]. Angewandte Chemie International Edition, 2011, 50(24): 5572-5575.


Favereau L, Cnossen A, Kelber J B, et al. Six-Coordinate Zinc Porphyrins for Template-Directed Synthesis of Spiro-Fused Nanorings[J]. Journal of the American Chemical Society, 2015, 137(45): 14256-14259.


Neuhaus P, Cnossen A, Gong J Q, et al. A Molecular Nanotube with Three‐Dimensional π‐Conjugation[J]. Angewandte Chemie International Edition, 2015, 54(25): 7344-7348.


Rousseaux S A L, Gong J Q, Haver R, et al. Self-Assembly of Russian Doll Concentric Porphyrin Nanorings[J]. Journal of the American Chemical Society, 2015, 137(39): 12713-12718.


Liu S, Kondratuk D V, Rousseaux S A L, et al. Caterpillar Track Complexes in Template‐Directed Synthesis and Correlated Molecular Motion[J]. Angewandte Chemie, 2015, 127(18): 5445-5449.


还有一派轮子是比较简单的环对苯撑体系,我就不掉书袋甩文献了……

(其实我本来想写莫比乌斯芳香性的……但是懒了。


user avatar   chaosmuseum 网友的相关建议: 
      

辣椒为什么是辣的?

我们曾经讨论过许多感知,今天终于轮到了叫人爱恨交加的“辣”。

人们虽然常说“辣味”,但辣并不是一种专门的味觉,与酸甜苦咸鲜有着截然不同的生理来源——它实际上是一种虚假的灼痛感。

植物们用各种物质营造这种灼痛感,驱散不请自来的食草动物,然而人类偏偏特立独行地爱上了这种感觉,由此引出了今天的故事。

我们谈到过很多茄科植物了,天仙子、曼陀罗、颠茄、茄参、莨菪、烟草、龙葵,甚至最普通的茄子土豆,个个都能合成致命的毒素,心狠手辣——相比之下,这个科的辣椒属就只是字面上的辣辣嘴而已了。

辣椒属原产中南美洲,大多是一些茂盛的小灌木,面对着当地绝大多数植物共同的难题:它们没有肌肉又想扩张地盘,就需要动物帮它们搬运种子,于是结出了红艳艳的小浆果彰显存在,希望能引得它们把自己一口吞下去,用消化道带去远方。

但是热带森林里既有鸟类,也有哺乳动物,前者没有牙齿,运动迅速,消化能力差不会损伤种子,显然是理想的合作方,辣椒属的植物于是进化出了排他的伎俩:它们能在子房壁上缩合几种酰胺类生物碱,统称辣椒素。

与氢离子等协同作用能打开哺乳动物消化道黏膜的香草素亚型的瞬时受体电位通道(TRPV1 )——这种离子通道受体原本负责在遭遇高温、擦伤或者强酸腐蚀的时候打开,将阳离子泻入细胞内,引起动作电位,带来强烈的痛觉,及时住口。

所以咀嚼辣椒就能在哺乳动物口中掀起剧烈的烧灼痛感,免得它们坚硬的臼齿和漫长的消化道把种子磨碎分解;而鸟类味觉迟钝,吃东西不嚼,再辣也照吃不误。

然而与茶叶、咖啡、巧克力一样,人类很早就发现了辣椒素在神经系统中的意外好处:伤害会带来疼痛,敦促我们躲避危险,但神经系统也知道适可而止,会及时始放内啡肽抑制痛觉。辣椒素骗得神经系统以为自己受了伤,就会诱使机体制造内啡肽——而内啡肽还能解除中枢神经的对多巴胺通路的抑制,由此觉得欣快愉悦,直至上瘾。

于是美洲原住民到公元前6000年就开始种植辣椒,把它与巧克力混在一起用来壮阳,哥伦布1493年第二次横渡美洲时又将辣椒带回了旧大陆,并以精纯的辣味成为世界上最流行的烹饪调料,抢走了黑胡椒数千年来的风头。

胡椒属分布在环绕赤道的整个热带雨林地区,仅就辣味而言完全是辣椒的另一个翻版:它们依赖鸟类传播种子,于是合成了许多胡椒碱和胡椒脂碱,分子结构和作用机理也都与辣椒一样,自古以来就是重要的辣味调料,但胡椒属的植物栽培很难,所以一直都很昂贵,不像辣椒那样容易普及。

好在旧大陆上还有其它辛辣的植物。大蒜原产帕米尔高原的苦寒之地,于是在鳞茎的腋芽中储存了许多越冬的养分,这让食草动物眼馋心热,大蒜于是在细胞里合成了许多蒜氨酸和蒜氨酸酶。

食草动物一旦要破细胞,这两种物质就会相遇,形成大量的二烯丙基硫代亚磺酸酯,也就是大蒜素。这东西能不可逆地与两种亚型的瞬时受体电位通道结合,同样带来火辣辣的感觉——尽管大蒜素的稳定性比辣椒素差很多,辣味很快就会消失,但是那些吞下肚的大蒜素将在血液中分解出甲基烯丙基硫醚,在肺部经呼吸排出,这就是为什么刷牙无法清除嘴里的蒜味。

大蒜在公元前5000年就已经远播埃及,到张骞出使西域又传入东亚,与它同属的大葱、香葱、洋葱、韭葱等等植物也都富含大蒜素而成为世界菜肴中常见的辣味来源,但可惜大蒜素稍稍加热就会分解挥发,不能给熟食带来辣味。

这让人想起我们讲述过十字花科植物,它们用芥子油苷和芥子酶构造了凶猛的“芥子油炸弹”,山葵、辣根和芥菜作为最杰出的代表都能制取芥末,也被视为经典的辣味调料——但要注意芥子油苷是通过刺激鼻窦制造真正的痛觉,而不是在口腔中结合瞬时受体电位通道营造假痛觉,反而算不上真正的“辣”。

有了葱蒜芥末,实在不能不提起姜:它们也用辣味物质防御食草动物,姜辣素的分子结构与辣椒素或者胡椒碱非常类似,也能打开香草素亚型的瞬时受体电位通道,但是效果要差很多,烹饪后化成一股甜香,煎炒烹炸百般皆宜,或者在南亚的菜肴中与其它几种辣味植物乱炖成咖喱,营造出独特的辛香味道。


想了解更多你不知道的知识,请在微信公众号搜索「混乱博物馆」,关注我们。




  

相关话题

  你的学科出现过哪些最终失败的有趣研究? 
  做科研/做科学家,最让你产生挫折感的是什么? 
  为什么 sp³d 杂化形成的是键角不等的三角双锥? 
  你觉得物理的魅力体现在哪里? 
  你见过哪些有意思的动物的行为? 
  一套简单有效的逻辑交易系统值多少钱? 
  如何评价科学家「又」发现金属氢? 
  食入少量二氧化锰怎么办? 
  为什么甲烷熔点比硅烷熔点高? 
  对人类影响最大,智商最高的人是谁? 

前一个讨论
为什么亚洲不再细分成几个小洲?
下一个讨论
怎样隐居?隐居应注意些什么?





© 2025-01-03 - tinynew.org. All Rights Reserved.
© 2025-01-03 - tinynew.org. 保留所有权利