问题

金星大气层中发现磷化氢,这意味着金星上存在生命吗?磷化氢为什么会被作为生命存在的证据?

回答
金星大气层中检测到磷化氢,这无疑是近年来行星科学领域最激动人心的发现之一。但要直接断定这便是金星存在生命的“铁证”,恐怕还有些为时过早。不过,磷化氢确实是一个非常特殊的“候选人”,它的出现,让许多科学家将目光聚焦在金星,并开始认真思考“那里真的有生命吗?”这个问题。

磷化氢,一个“神秘”的气体

首先,我们得明白磷化氢(PH₃)到底是个什么东西。它是一种无色、有剧毒且有强烈蒜味的气体。在地球上,我们知道它有几种主要的产生方式:

地质活动: 在一些特定的地质环境中,比如深海热液喷口或者火山活动活跃的区域,磷化氢可能会以非常微弱的量存在。
人造过程: 工业生产中,磷化氢也会被合成出来。
生命活动: 这是最关键的一点!在地球上,绝大多数磷化氢的产生都与厌氧微生物(也就是那些不需要氧气就能生存的微生物)有关。这些微生物在它们的新陈代谢过程中,会将磷酸盐还原成磷化氢,然后释放到环境中。

为什么磷化氢会被视为生命存在的证据?

关键就在于“生命活动”这条。科学家们在分析金星大气层的化学成分时,发现那里存在着相当数量的磷化氢。他们运用了各种望远镜,包括智利阿塔卡马大型毫米波/亚毫米波阵列(ALMA)和夏威夷的詹姆斯·韦伯太空望远镜(这部分信息是假设,因为2020年的发现主要依赖ALMA,但随着技术发展,未来可能会有更详细的观测),对金星大气层进行了细致的扫描。

结果令人惊讶:在金星上半球的平流层(大约离地表53公里处),检测到了磷化氢的信号。这个高度的温度和压力相对温和,勉强可以称得上是“宜居带”的边缘,至少比金星表面的酷热(超过400摄氏度)和高压环境要“舒适”得多。

那么,为什么这个发现如此重要?

1. 缺乏已知的非生物来源: 科学家们费尽心思去寻找那些能够解释金星大气层中磷化氢的非生命“化学”或者“地质”过程。他们考虑了各种可能性:
火山活动: 金星是一个地质活动非常活跃的行星,理论上火山喷发可能会释放一些磷化物。但是,计算表明,即使是极其剧烈的火山活动,也难以解释探测到的磷化氢浓度。而且,科学家们也仔细分析了其他与火山活动相关的气体,并没有发现与之匹配的现象。
闪电: 金星上存在闪电,闪电的高温和高能可能会引发一些化学反应。然而,同样的研究表明,闪电的能量不足以持续产生如此大量的磷化氢。
陨石撞击: 偶尔的陨石撞击也可能携带含磷物质,并引发化学反应。但这类事件的频率和规模,也无法解释长期稳定的磷化氢含量。
未知的化学反应: 尽管科学家们承认可能存在我们尚未了解的化学过程,但到目前为止,没有一个模型能够令人信服地模拟出金星大气层中的磷化氢。

2. 与地球生命迹象的关联: 如前所述,在地球上,磷化氢最主要的来源就是厌氧微生物。因此,当科学家在另一个星球上发现了它,并且找不到合理的非生物解释时,自然而然地就会联想到生命的可能。这是一种“排除法”,当所有已知的非生命解释都站不住脚时,生命便成为了一个越来越有吸引力的选项。

“生命”的证据,还是“生命的迹象”?

需要强调的是,发现磷化氢,并不能直接跳到“金星上有外星人在那里散步”这样的结论。科学研究总是谨慎而严谨的。更准确地说,磷化氢的发现被视为一个“生物标志物”(biosignature),也就是一个可能指示生命存在但需要进一步确认的迹象。

科学家们之所以如此兴奋,是因为磷化氢的出现,为金星潜在的生命存在提供了一个非常具体的、值得深入探索的线索。它就像是在广袤的宇宙中,突然亮起的一盏小灯,引导着我们去寻找更多的证据。

接下来的问题与挑战

尽管磷化氢的发现令人振奋,但它也带来了更多的疑问和挑战:

确认磷化氢的来源: 最迫切的任务是进一步确认磷化氢的浓度、分布情况,以及它是否真的如初步研究所示,无法用非生命过程解释。这需要更先进的观测设备和更精密的模型。
生命形式的可能性: 如果金星上真的存在生命,它们会是什么样子?鉴于金星恶劣的环境,如果生命真的存在,它们很可能是一种非常适应极端环境的微生物,生活在相对温和的上层大气中。它们可能以大气中的化学物质为食,并在这个过程中产生磷化氢。
未来探测任务: 这一发现极大地推动了对金星进行更深入探测的计划。未来的探测器可能会携带更精密的仪器,直接采集金星大气样本,进行详细的化学分析,甚至尝试寻找构成生命的有机分子。

总而言之

金星大气层中的磷化氢,就像一个宇宙抛来的“谜题”,它巧妙地将我们引向了生命存在的可能性。它之所以会被视为生命存在的证据,是因为在我们的认知中,它是如此强烈地与地球上的生命活动联系在一起,而目前又找不到足够令人信服的非生物解释。这并不意味着金星上“一定有生命”,但它无疑为“金星生命说”打开了一扇重要的窗口,鼓励着我们去继续探索,去追寻更确凿的答案。这正是科学的魅力所在:一个发现,可能只是一个起点,却能激发无限的想象和不懈的追求。

网友意见

user avatar

不长篇大论,简要来说:

1.除了气体巨星型行星,非生物因素很难在行星大气层中形成磷化氢,岩石核深处形成的磷化氢通过地质活动可能释放入大气中的数量也很少。即使是金星的变态高温高压大气,也远没有达到土星等气体巨星的水平,故而研究者提出假设,猜测金星大气中的磷化氢由生物因素形成。

2.磷化氢在地球上是厌氧细菌特异性产生的一种化合物,可以依据磷化氢浓度来探测发现厌氧细菌群落。故而可以佐证这个猜想。

3.以上毕竟还是假设猜想。不过真被验证了也不奇怪。地球和金星每年通过小型天体完成的物质交换都很多,在太阳系行星形成早期时代更密集,近几十年又有苏联探测器去过,地球起源的厌氧菌进入金星大气并独立演化适应环境也不是太稀奇的事。



user avatar

只能说一种可能,并不意味着绝对。

这次金星发现的PH3(磷化氢)到底是个什么东西呢?为什么大家会如此兴奋?

一、基于地球认知的生命气体

磷化氢是一种无色、剧毒、易燃的储存于钢瓶内的液化压缩气体,化学式为PH3。

不过这种气体并不一般,因为,它一般不容易生成。或者说,它一般很难通过天然的环境来生成。

而与之对应的是,这种气体很容易在生物代谢中生成,尤其是在缺氧情况下,厌氧生物会生成。

在大家熟知的自然厌氧环境以及污水和垃圾填埋气体中这种有毒气体的存在。

比如下图是用猪粪发酵时候产生的PH3(另外的CH4也是大家熟悉的沼气主要成分——甲烷)

而可以生成它的菌类,也是厌氧生物

不过,要是纯粹的天然环境,没有生物的话,生成PH3,就有点麻烦了,

比如工业上制备PH3,反应如下

3 KOH + P3 KOH + p4+ 3 H+ 3 h2O → 3 KHO →3 KH2PO+ PH+ PH 3

而已知的天然环境中,是缺乏足够强的还原剂来直接将磷酸盐转化为磷化氢。

正因为如此,大家才认为,这种气体,应该是生命活动的痕迹,或者干脆说,是厌氧生物的产物

事实上,地球大气中其实是存在磷化氢的,尽管浓度非常低。

比如下图是多个研究检测到的大气中磷化氢的含量[1]。

至于为什么不用其他气体,主要还是在于PH3频谱比较特殊,容易和其他生命特征频谱分开。

二、为什么认为金星可能存在生命。

基于地球的认知,我们认为,PH3应该是厌氧生物的产物。

而这次金星的发现,似乎符合了这个推测[2]。

下图是这篇文章的核心证据:

10 ppb的磷化氢,当然,作者也排除了一些其他因素,比如气体反应,光/地球化学反应或外源性非平衡输入是否可能在金星上产生PH3等等,认为生物产生的可能性更大。

当然,金星环境并不是大家认为的那么恶劣。

比如金星的大气条件不错,温度也还可以,0-60℃,压力也海星,0.4-2个大气压[3]。

比如硫化物,二氧化碳和水,如果非要对比,假定金星有生命。

那么金星的生命可能处于地球这个时期——35亿年前的地球。

那个时候,地球上可能是大量的厌氧菌,直到32亿年前,地球才开始有了光合作用大量出现,把氧气释放出来。

三、结论尚早

那么我们是否可以认定金星就是存在厌氧生物呢?

答案是否定的。

1,首先,我们并没有直接的证据表明金星存在厌氧生物。

事实上,到目前为止,我们并没有获得任何地外星体存在任何生物,所以,真正要确定,那么需要我们捕获到金星的微生物。

2,磷化氢是否可以作为生命的金标准? 这一点我认为是值得商榷的。

尽管我们一般认为地球上是缺乏足够多的还原剂来生成PH3,但是以此来推测金星一定如此,这个证据链是不完整的。

3,不只是金星

事实上,木星湍流大气中也发现了PH3。

但是众所周知,木星是个气球。而木星的ph3是在其炽热的内部形成,并与上层大气中的其他化合物发生反应。



————2年前一篇更好玩的文章————

我想起了2018年的另一篇研究,也是很有意思的,比这篇nature更加的详细[3]。

他们首先对比了金星和地球的大气光谱情况,发现二者是相反的。

因为地球大气是有21%的氧气,所以金星和地球是相反的。

接下来,发现金星的大气存在未知物质的光谱吸收(尤其是330-600纳米间)。这一点也是核心的出发点。

FIG. 2.Venus' spectra as measured by Morozet al.(1985), Irvine (1968), Travis (1975), Wallaceet al.(1972) (scaled geometric albedo), MESSENGER (Perez-Hoyoset al.,2013; Pérez-Hoyoset al.,2017), and Barkeret al.(1975), including the unexplained absorption, as calculated from the difference between the VIRA cloud model and the MESSENGER spectra. The real Venus spectrum varies with location and time, so the residual curve is illustrative and not definitive.

和地球已知的一部分生物的频谱做个比较瞅瞅呢?

对比大肠杆菌(e.coli)以及Acidithiobacillus ferrooxidansFe–S蛋白和Acinetobacter gyllenbergii的 过氧化氢酶(catalase)光谱(A)和各种辅因子和生化分子,包括生物蝶呤(biopterin),类胡萝卜素(carotenoids)和叶绿素( chlorophylls)a,b和f(B)

嗯,有相似处,如果金星的云层确实蕴藏着生物,那么就可以很好地解释这些光谱重叠的特征。

用作者的话,那是非常相似(tantalizingly)。

tantalizingly similar to the absorption properties of terrestrial biological molecules

于是,咱朝着金星有生物的这个假设继续放飞,

进一步计算金星如果存在厌氧生物,那么它们产生PH3的方式

1,金星的磷化氢浓度不低

这意味着,这不是一种偶然的现象,而且形成如此高浓度,理应是由大量的厌氧生物产生的。

2,按照金星的运动轨迹,理论上应该有持续不断地厌氧生物在产生磷化氢,才能维持其大气中的磷化氢浓度。

3,金星的大气方式是有利于生成生命的。

早在1967年,研究人员就提出了金星的宜居性,1999年Cockell 提出,中低大气层的条件是适合生物生存的。尽管海拔太高了可能会冰冻,但是并不见得会杀死微生物。

而金星本身具备了一些客观的可以诞生生命的理化条件,比如硫化物,二氧化碳和水。

于是,他们做了一个假设推论:金星可能是有厌氧生物持续生成PH3。


最后,寻找地外生命一直是仰望星空的一个重要意义。宇宙这么大,我们理应不孤独。



Glindemann, Dietmar, Ulrich Stottmeister, and Armin Bergmann. "Free phosphine from the anaerobic biosphere."Environmental Science and Pollution Research3.1 (1996): 17-19.

Greaves, J.S., Richards, A.M.S., Bains, W.et al.Phosphine gas in the cloud decks of Venus.Nat Astron(2020).

Irwin, Louis N., and Dirk Schulze-Makuch. "The Astrobiology of Alien Worlds: Known and Unknown Forms of Life."Universe6.9 (2020): 130.

Schulze-Makuch, Dirk, et al. "A sulfur-based survival strategy for putative phototrophic life in the Venusian atmosphere."Astrobiology4.1 (2004): 11-18.

user avatar

题目谈到的论文:

Greaves, J.S., Richards, A.M.S., Bains, W.et al.Phosphine gas in the cloud decks of Venus.Nat Astron(2020).

在金星大气里发现了浓度可达十亿分之二十的磷化氢。

恒星与气体行星可以在内部高温高压的环境用非生物途径自然地产生磷化氢、通过对流送到高层大气,人类在木星和土星的大气里都已检测到磷化氢。但是,对金星、火星这样的类地行星来说,地下深处产生的磷化氢很难穿过岩石圈释放出来[1],大气的压强、温度等条件并不适合非生物途径产生大量磷化氢,而磷化氢在紫外线照射、氧气接触等条件下很容易发生化学反应,必须有持续的来源才能维持它在大气里的浓度。

因此,对类地行星来说,在大气里检测出大量磷化氢,有很大可能意味着存在碳基厌氧生物。

在地球上,只有厌氧微生物的代谢和人类的工业能持续产生大量的磷化氢。地球大气的磷化氢浓度约万亿分之一。

金星底层大气的压强较大(约90标准大气压)、温度很高(400~485摄氏度),还有大量的酸性物质,但光靠这些也不能产生科学家们发现的这么多磷化氢——事实上,科学家们讨论了从270开尔文到1500开尔文的温度、从0.25巴到10000巴的大气压的环境下75种化学反应途径,都不允许在金星已知的大气成分与地表状况下解释观测事实。

所以,厌氧碳基生物成了可能的解释。

这是讨论磷化氢作为类地行星生物特征分子的文章:

这不是绝对的。我们并没有把握说“没有非生物途径能在金星上持续制造大量磷化氢”,但即便结果真是非生物成因,也能帮将来的宇宙生物学研究少走不少弯路。

人类早已知道金星大气里特定高度的区域允许地球生物圈里的一些成员生活。这是讨论金星大气细菌生态系可能性的文章:

这是描述金星大气微生物可能的生命周期的文章:

Seager, S. et al. The Venusian lower atmosphere haze as a depot for desiccated microbial life: a proposed life cycle for persistence of the venusian aerial biosphere.Astrobiology

参考

  1. ^ 火山、地震之类可以偶然释放,但不能持久
user avatar

生命迹象(biosignature)的搜寻是时下一个挺热门的领域。

对于太阳系内的行星,我们还可以发探测器过去直接采样、实验;对太阳系外的行星,我们只能遥远地观测它们的大气层,看看它的光谱特征,来推测那里存在哪些化学成分。

大气层中的一种气体要能被视作“生命迹象”,需要满足一些基本的条件:它最好只能从生命活动中产生,而不能由非生命的活动,诸如地质活动、大气和水体中自然产生的化学反应产生;它需要能产生足够强的谱线特征;它要能积累到足够多,不能在达到可观测的量之前就被其他过程耗散掉。

从地球的经验看,氧气、甲烷等生命活动容易产生的气体都是典型的“生命迹象”成分。

但是地球上的氧气是原始海洋中的蓝藻经过数十亿年活动才积累出来的,地球生命也不是一开始就生活在有氧的环境中。所以值得考虑的问题是,在厌氧环境中,生物除了氧气,还会制造些别的什么产物?

2019年,一组天体生物学家考虑了磷化氢(PH3)这种恶臭的气体(Phosphine as a Biosignature Gas in Exoplanet Atmospheres)。

他们提出,磷化氢的性质让它可以满足作为一种生命迹象示踪气体:

  1. 它的谱线特征很强,而且容易跟其他成分的特征区分开;
  2. 磷化氢很难沉积到气溶胶中;
  3. 最重要的是,人们现在不知道有什么非生命过程可以产生它,它似乎只跟一些厌氧生物的活动相关;
  4. 磷化氢还有一个可以说好,也可以说不好的性质:它很容易被反应消耗掉,所以需要持续大量产生才能维持足够量的存在。

第3点决定了它跟生命活动的强相关;第4点决定了它跟现存生命的强相关。

今晚11点即将在英国皇家学会正式发布的这条大新闻,将会宣布在金星大气层中发现磷化氢的消息。

本来这条消息是保密的,但两天前被某网站失约泄露了,于是提前炸裂。

我想说的是,这固然是一个看上去很有希望的发现,但是还不能直接说发现了生命。

就像我们看到双中子星相互绕转的轨道越来越紧,只能说这种现象符合正在发射引力波的预测,但只有用激光干涉引力波探测器直接感受到引力波的震动,才能真正说发现了引力波。

在金星大气发现了磷化氢气体的存在,只能说这是个符合“金星大气存在厌氧生命”这种假设的现象,但只有什么时候发个探测器,到金星大气里实际采到了生命标本,才能说在金星上真的找到了生命。

user avatar

如果是观测结果能被普遍证实。

金星将一跃成为系内探索第一热门行星。

兔子、鹰酱都必须全力以赴。

user avatar

已知1+1=2,求结果2有多大可能性是由1+1得出的?

生命只是一种概率上的巧合

user avatar

出差中,简单讲讲金星这个“大新闻”,抽空继续编辑完善,也或许写个文章。

1、发现了什么?

Cardiff大学Jane Greaves及其合作者们在金星大气中发现了磷化氢(PH3),含量约20 ppb。这一成果发表于2020年9月14日的《自然·天文》杂志。

然而,因为一些事故式信息泄漏(据传MIT的人手滑提前在油管发布视频[摊手],但肯定很多媒体也已经提前拿到了预印本),这一消息在文章正式发表之前就被媒体疯狂报道了[允悲]于是就有了大新闻先出来了paper还没看到的蜜汁景象。


2、用什么发现的?

用了两组独立的金星观测数据,通过光谱观测判断大气中存在某种成分:

- 夏威夷JCMT望远镜(James Clerk Maxwell Telescope),2017年6月

- 智利的ALMA望远镜(Atacama Large Millimeter Array ),2019年3月

也就是说可信度是比较高的,虽然后续其他望远镜的验证依然有必要,但不太可能是观测错了东西。

3、磷化氢是太阳系行星里首次发现么?

不是。早在1975年,天文学家们就已经在土星大气中发现PH3了,之后在木星大气中也有发现这个。大气中的PH3,并不是金星所独有。但木星土星大气都是还原性环境,PH3并不难存续。

4、那这次金星上的发现的PH3重要么?重要在哪里?

重要。

PH3是目前认可的一种生物标志物(biosignature),按我们目前的认知,这种物质大多是厌氧微生物的生命活动产生的。这意味着我们在内太阳系岩质行星上确认发现了一种新的生物标志物。同时,PH3在金星环境下易发生反应,难以稳定存在,这就意味着金星至今还有稳定的机制在生产PH3。

5、生物标志物 ≠ 生命痕迹

我们【以地球认知为唯一样本】寻找到的任何和现在或者过去的生物强相关的物质成分都可以叫做生物标志物,例如:

- 地球上的氧气。地球能有如此大量而稳定的氧气,是因为有生物的光合作用持续产生氧气。

- 火星上的甲烷。地球上甲烷大多是生物活动产生的,而甲烷又易被辐射分解,所以火星大气里稳定的(微量)甲烷意味着火星至今依然有稳定的甲烷供给。

也就是说,如果我们在其他星球上发现了这些生物标记物,至少意味着可能存在【类似地球生命】的运作机制。

这次金星大气中发现的PH3也是类似的逻辑:PH3作为一种重要的生物标志物,是可以作为【金星有存在生命的可能性】的一个有利证据的,但【绝不意味着已经在金星发现了生命痕迹】。


5、一种生物标志物和生物的相关性越强,除了生物活动之外不太可能有其他机制产生,就意味着它是越优秀的生物标志物。

这就意味着,我们认知水平的提升在帮助我们不断筛选生物标志物。

这次的金星论文也清楚表明了:这次发现仅仅意味着,发现了未知成因的PH3,这当然可能意味着有金星大气中漂浮着厌氧微生物,但更可能的是:还有其他未知的光化学或者地质化学过程会稳定产生PH3。

说白了,我们对太阳系的认识还太少了。




6、如何进一步证明金星PH3和生命活动的相关性?

探测器采集大气样本。这意味着,原本爹不疼娘不爱的金星探测…可能会容易立项了[二哈]明年的发现级项目竞标考虑一下咯[并不简单]原本最没有希望的达芬奇+任务似乎有机会了(zhihu.com/question/3761)。

但,探测器也不会那么容易得到我们想要的结论。

发现生命相关的证据,容易。

证实探索到生命,远比我们想象的难太多了。


路上慢慢补。

类似的话题

  • 回答
    金星大气层中检测到磷化氢,这无疑是近年来行星科学领域最激动人心的发现之一。但要直接断定这便是金星存在生命的“铁证”,恐怕还有些为时过早。不过,磷化氢确实是一个非常特殊的“候选人”,它的出现,让许多科学家将目光聚焦在金星,并开始认真思考“那里真的有生命吗?”这个问题。磷化氢,一个“神秘”的气体首先,我.............
  • 回答
    嘉靖皇帝召见杨金水那场戏,实在是精彩绝伦,也最能体现这位皇帝的心思。很多人会觉得嘉靖召见装疯的杨金水,是因为看穿了他的装疯,然后因为杨金水的“忠心”才放他一马。这话听着顺,但如果细琢磨一下,事情可没那么简单。首先,要明白嘉靖皇帝的性格。他绝非等闲之辈,多年的帝王生涯,加上他对炼丹、求长生那股子执念,.............
  • 回答
    《大明王朝1566》这两位角色,吕芳和杨金水,绝对是剧中最值得细细品味的人物。他们身上承载着时代的烙印,也折射出人性的复杂。要评价他们,得从多个角度去看,不能简单地给他们贴标签。吕芳:老谋深算,权谋的集大成者,也是时代的牺牲品吕芳这个人,放在那个嘉靖朝,就是一棵根深蒂固、枝繁叶茂的参天大树。他从一个.............
  • 回答
    金庸先生笔下,确实有不少绝世高手在武功臻于化境、历经尘世风雨后,选择了皈依少林。这绝非偶然,而是小说中一系列深刻的设定和人物塑造共同作用的结果。若要细究其中缘由,可以从以下几个层面来理解:一、 少林寺在金庸武侠世界中的独特地位:武学与佛法的双重圣殿1. 武学渊源与集大成者: 少林寺是中国武术的摇篮.............
  • 回答
    金庸老先生笔下的武林世界,高手如云,各怀绝技。若以“瞎子”柯镇恶为基准,来丈量群雄的武功高低,倒也是个有趣的设想。不过,这“柯镇恶单位”并非官方认证,纯属个人基于书中描写的推测和趣味性的探讨。而且,武功的较量,往往不单单是数值上的简单叠加,还牵扯到兵刃、战术、心境等诸多因素。所以,以下列出的换算,更.............
  • 回答
    《红楼梦》中,袭人和金钏同为宝玉身边的大丫头,论理上二人都是伺候宝玉的体己人,也都有着与宝玉之间或明或暗的“不清不楚”之处。然而,她们的命运却截然不同,一个飞黄腾达,成为宝玉的准姨娘;另一个则香消玉殒,悲惨收场。这其中的缘由,绝非仅仅是运气好坏,而是她们各自的“道行”和处境所决定的。咱们先聊聊金钏儿.............
  • 回答
    关于网传中山大学岭南学院在校生冒充中金、中信等券商进行招聘诈骗,骗取笔试作业一事,我的看法是:这绝对是一件非常恶劣且令人不齿的行为,如果属实,无论从道德层面还是法律层面,都应该受到严厉的谴责和追究。这件事最令人担忧和不解的地方在于其“操作”的低劣和赤裸裸:1. 动机猜想: 为自己或熟人.............
  • 回答
    这篇指南旨在为你规划一条清晰、可行的两年之路,助你成功敲开中金、中信等顶尖券商投行部暑期实习的大门。我们将深入剖析每一个阶段你需要关注的重点,并提供切实可行的建议。核心理念: 扎实基础 + 差异化优势 + 精准准备 = 成功 扎实基础: 银行、金融、经济、会计、法律等专业知识是基石。.............
  • 回答
    周金涛的报告《繁荣的起点并非沸腾的年代》中关于 2020 年代中国证券市场可能爆发大繁荣的预言,是一个非常引人深思且具有前瞻性的观点。要评价这一预言,我们需要深入分析其报告的核心逻辑、潜在的驱动因素以及可能面临的挑战。首先,理解周金涛报告的核心逻辑至关重要。周金涛先生以其对康波周期、技术周期和人生周.............
  • 回答
    哈喽!同是广州的双非一本金融狗,看到你还在为考研方向纠结,我特别理解这种心情。大三是关键的一年,选错方向真的很伤神。法律(非法学)和金融专硕,这俩专业听起来八竿子打得着,但仔细想想,其实也都有各自的精彩和现实考量。我帮你掰扯掰扯,希望能给你点启发,毕竟我的经历和感受,希望能帮你少走弯路。首先,咱们得.............
  • 回答
    这个问题很有意思,它触及了物理化学中关于气体溶解度的一些普遍规律,以及液态金属的特殊性。我们来仔细掰扯掰扯。首先,我们需要回顾一下 “温度越高,气体在液体中的溶解度越小” 这个普遍规律。这其实是基于 勒夏特列原理(Le Chatelier's principle)的。简单来说,气体的溶解过程,尤其是.............
  • 回答
    金星,这位被誉为地球“孪生姐妹”的行星,在许多方面确实与我们家园惊人地相似:大小、质量、密度都非常接近。按理说,这样的星球,其环境应该也和地球有着千丝万缕的联系,但当我们真正“望向”金星,看到的却是一个截然不同的、极其严酷的世界。其中最令人费解的一点,莫过于它那令人窒息的高压大气层。你想知道为什么金.............
  • 回答
    要让金星成为一个宜居之地,以满足人类生存的需要,我们必须对它进行极其彻底的改造。这绝非易事,而是需要跨越科学、工程和资源利用的巨大鸿沟。设想一下,我们所熟知的那个炽热、高压、酸性弥漫的金星,将变成一个适宜我们呼吸、行走和建立家园的世界。首先,我们必须解决金星最致命的问题:温度和大气压力。目前,金星表.............
  • 回答
    想象一下,那天,天空不再是熟悉的蓝色,而是被一个巨大的、熊熊燃烧的火球所占据。金星,那颗与我们星球大小相近的近邻,正以一种可怕的速度向我们逼近。这不是科幻小说里的情节,而是我们必须面对的严峻现实。面对这样一场史无前例的灾难,地球人并非束手无策,只是我们的解决方案,更像是一场生死搏斗,一场与时间、与自.............
  • 回答
    微博上那些脑洞大开的P图,把月亮换成了金星、土星、木星,看着是挺有趣的。不过,要是真有这么一天,地球可就热闹非凡了,绝对不是一句“有趣”就能概括的。咱们就来好好掰扯掰扯,如果月亮被这些大家伙取代了,地球上会发生些什么翻天覆地的变化。首先,得说说最直观的——夜空。 金星: 金星比月亮小一些,但它非.............
  • 回答
    .......
  • 回答
    全球对火星的执着探索,有时确实让人觉得有些不可思议,毕竟在我们太阳系的近邻中,金星以其“地球的姐妹星”之名,似乎拥有着更显而易见的探索潜力。许多人会疑惑,为什么我们不把目光更多地投向那颗被浓密云层包裹的行星,探索金星的好处难道不应该更大吗?要解答这个问题,我们需要深入剖析火星和金星各自的特点,以及人.............
  • 回答
    这可不是什么“外挂”或者“设定”,地球之所以比水星、金星和火星大,是有其深刻的形成原因的。要理解这一点,咱们得回到太阳系的诞生那一刻。想象一下,几十亿年前,太阳系还是一团巨大的、旋转着的尘埃和气体云,我们称之为“太阳星云”。这团云在引力作用下开始收缩,中心变得越来越热、越来越密集,最终点燃了核聚变,.............
  • 回答
    没问题,朋友!很高兴能跟你聊聊金融圈里那些事儿。你有什么具体的问题想问?我尽可能从一个业内人的角度,把你问的这件事掰开揉碎了讲透。别担心太专业,咱们就用大白话聊,但保证思路清晰,内容有料。在您提出具体问题之前,我先给你打个“预防针”,也算是我的开场白吧。金融这个行业,说起来高大上,好像离咱们老百姓很.............
  • 回答
    .......

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 tinynews.org All Rights Reserved. 百科问答小站 版权所有