百科问答小站 logo
百科问答小站 font logo



芯片里面有几千万的晶体管是怎么实现的? 第1页

  

user avatar   lao-ji-fu-li-40 网友的相关建议: 
      

前方大量图片预警,请非Wifi党留步。。。。。。。

简单地说,处理器的制造过程可以大致分为沙子原料(石英)、硅锭、晶圆、光刻(平版印刷)、蚀刻、离子注入、金属沉积、金属层、互连、晶圆测试与切割、核心封装、等级测试、包装上市等诸多步骤,而且每一步里边又包含更多细致的过程。

下边就图文结合,一步一步看看:

沙子:硅是地壳内第二丰富的元素,而脱氧后的沙子(尤其是石英)最多包含25%的硅元素,以二氧化硅(SiO2)的形式存在,这也是半导体制造产业的基础。

硅熔炼:12英寸/300毫米晶圆级,下同。通过多步净化得到可用于半导体制造质量的硅,学名电子级硅(EGS)平均每一百万个硅原子中最多只有一个杂质原子。此图展示了是如何通过硅净化熔炼得到大晶体的,最后得到的就是硅锭(Ingot)。

单晶硅锭:整体基本呈圆柱形,重约100千克硅纯度99.9999%

第一阶段的合影。

硅锭切割:横向切割成圆形的单个硅片,也就是我们常说的晶圆(Wafer)。顺便说,这下知道为什么晶圆都是圆形的了吧?

晶圆:切割出的晶圆经过抛光后变得几乎完美无瑕,表面甚至可以当镜子。事实上,Intel自己并不生产这种晶圆,而是从第三方半导体企业那里直接购买成品,然后利用自己的生产线进一步加工,比如现在主流的45nm HKMG(高K金属栅极)。值得一提的是,Intel公司创立之初使用的晶圆尺寸只有2英寸/50毫米。

第二阶段合影。

光刻胶(Photo Resist):图中蓝色部分就是在晶圆旋转过程中浇上去的光刻胶液体,类似制作传统胶片的那种。晶圆旋转可以让光刻胶铺的非常薄、非常平。

光刻光刻胶层随后透过掩模(Mask)被曝光在紫外线(UV)之下,变得可溶,期间发生的化学反应类似按下机械相机快门那一刻胶片的变化。掩模上印着预先设计好的电路图案,紫外线透过它照在光刻胶层上,就会形成微处理器的每一层电路图案。一般来说,在晶圆上得到的电路图案是掩模上图案的四分之一。

光刻:由此进入50-200纳米尺寸的晶体管级别。一块晶圆上可以切割出数百个处理器,不过从这里开始把视野缩小到其中一个上,展示如何制作晶体管等部件。晶体管相当于开关,控制着电流的方向。现在的晶体管已经如此之小,一个针头上就能放下大约3000万个。

第三阶段合影。

溶解光刻胶:光刻过程中曝光在紫外线下的光刻胶被溶解掉,清除后留下的图案和掩模上的一致。

蚀刻:使用化学物质溶解掉暴露出来的晶圆部分,而剩下的光刻胶保护着不应该蚀刻的部分。

清除光刻胶:蚀刻完成后,光刻胶的使命宣告完成,全部清除后就可以看到设计好的电路图案。

第四阶段合影。

光刻胶:再次浇上光刻胶(蓝色部分),然后光刻,并洗掉曝光的部分,剩下的光刻胶还是用来保护不会离子注入的那部分材料。

离子注入(Ion Implantation):在真空系统中,用经过加速的、要掺杂的原子的离子照射(注入)固体材料,从而在被注入的区域形成特殊的注入层,并改变这些区域的硅的导电性。经过电场加速后,注入的离子流的速度可以超过30万千米每小时

清除光刻胶:离子注入完成后,光刻胶也被清除,而注入区域(绿色部分)也已掺杂,注入了不同的原子。注意这时候的绿色和之前已经有所不同。

第五阶段合影。

晶体管就绪:至此,晶体管已经基本完成。在绝缘材(品红色)上蚀刻出三个孔洞,并填充铜,以便和其它晶体管互连。

电镀:在晶圆上电镀一层硫酸铜,将铜离子沉淀到晶体管上。铜离子会从正极(阳极)走向负极(阴极)。

铜层:电镀完成后,铜离子沉积在晶圆表面,形成一个薄薄的铜层。

第六阶段合影。

抛光:将多余的铜抛光掉,也就是磨光晶圆表面。

金属层:晶体管级别,六个晶体管的组合,大约500纳米。在不同晶体管之间形成复合互连金属层,具体布局取决于相应处理器所需要的不同功能性。芯片表面看起来异常平滑,但事实上可能包含20多层复杂的电路,放大之后可以看到极其复杂的电路网络,形如未来派的多层高速公路系统。

第七阶段合影。

晶圆测试:内核级别,大约10毫米/0.5英寸。图中是晶圆的局部,正在接受第一次功能性测试,使用参考电路图案和每一块芯片进行对比。

晶圆切片(Slicing):晶圆级别,300毫米/12英寸。将晶圆切割成块,每一块就是一个处理器的内核(Die)。

丢弃瑕疵内核:晶圆级别。测试过程中发现的有瑕疵的内核被抛弃,留下完好的准备进入下一步。

第八阶段合影。

单个内核:内核级别。从晶圆上切割下来的单个内核,这里展示的是Core i7的核心。

封装:封装级别,20毫米/1英寸。衬底(基片)、内核、散热片堆叠在一起,就形成了我们看到的处理器的样子。衬底(绿色)相当于一个底座,并为处理器内核提供电气与机械界面,便于与PC系统的其它部分交互。散热片(银色)就是负责内核散热的了。

处理器:至此就得到完整的处理器了(这里是一颗Core i7)。这种在世界上最干净的房间里制造出来的最复杂的产品实际上是经过数百个步骤得来的,这里只是展示了其中的一些关键步骤。

第九阶段合影。

等级测试:最后一次测试,可以鉴别出每一颗处理器的关键特性,比如最高频率、功耗、发热量等,并决定处理器的等级,比如适合做成最高端的Core i7-975 Extreme,还是低端型号Core i7-920。

装箱:根据等级测试结果将同样级别的处理器放在一起装运。

零售包装:制造、测试完毕的处理器要么批量交付给OEM厂商,要么放在包装盒里进入零售市场。

PS:

以上是曾经在在驱动之家看到的CPU的制造过程,

从沙子到芯片:且看处理器是怎样炼成的

;感觉过程很有意思,遂现在分享给大家。如果有兴趣的话可以进一步观看视频,

从沙子到芯片,Intel英特尔处理器制作过程


user avatar   GermaniumGeek 网友的相关建议: 
      

看到

@呆涛

@老骥伏枥

的答案,感觉基本已经涵盖了一个电路从设计走到生产的每一步。但是感觉在细节上还是存在一些问题:

1. 当前CPU上的晶体管已经远远不是千万级别的概念,而是数个billion。

2. 目前最先进的制程工艺是Intel 刚刚公布的14nm工艺,Fin Pitch小于 50nm,可以说是技术上的一个飞跃了。关于所谓的14nm,实际只能初略的反映工艺的一个技术节点,真正的沟道长度要比14nm要长一些。

3. 关于14nm之后的技术,目前理论预测的极限大概在3nm左右。出去开会的时候和一些工业界的大牛们有过一些学习,据说目前10nm已经完成了大规模生产最初阶段的论证,而7nm也基本完成了实验室阶段的研发。感觉5nm,甚至是3nm只是时间上的问题。

4. 关于CPU的生产流程,实际只包含Intel的工艺是不完整的。目前技术上有两大阵营,一者是Intel为首的Bulk Si FinFET 技术,一者是IBM为首的 SOI Si 技术,两者技术各有利弊。

5. 关于那么多晶体管是怎么弄上去的,实际最本质的还是光刻技术

Photolithography

,随着特征尺寸的缩小,光刻的重要性已经上升到无法上升的地步了,以至于出现了EUV

Extreme ultraviolet lithography

和Multiple patterning

Multiple patterning

等诸多逆天的技术,光这些技术都可以说上很多文字了。

5. 半导体产业毋庸置疑是近百年最为激动人心的领域,正是这无数的晶体管一代又一代的更新变革才有了近些年几乎爆炸式的IT 技术进步。

6. 之前很难想象那几十亿个晶体管能几乎完全一致并且整齐划一的工作而不出现任何错误,这本身就是一件非常amazing的事情,其实在那小小的CPU背后包含了无数人几十年的心血(Intel在美国的技术研发部门有一万多人,其中有8000多PhD,可想而知其中投入的人力物力之大),于是这个问题就不难理解了。

之前因为科研需求拆过一个CPU。

------------------------------------------------------------------------------------------------------------

于是放两张照片和大家分享。

这是一个Top-down View 的SEM照片,可以非常清晰的看见CPU内部的层状结构,越往下线宽越窄,越靠近器件层。

这是CPU的截面视图,可以清晰的看到层状的CPU结构,由上到下有大约10层,其中最下层为器件层,即是MOSFET晶体管。

拆解的CPU是AMD的产品,AMD作为IBM阵营的公司,同Intel不同,其采用的是SOI 衬底技术。

-----------------------------------------------------------------------------------------------------------------------

关于之前提到的Intel 14nm 技术,在去年的国际电子器件会议上(IEDM2014),Intel公布了其的具体的技术细节,虽然还是有些语焉不详,但已经能够比较完整了解其中的一些工艺进展。

此为3D FinFET中的Fin结构,Fin Pitch(两个Fin之间的距离)为40nm,这对于工艺上是很大的挑战了,同时对于提高集成度缩小成本具有非常重要的意义。

这是整个CPU某一区域的截面TEM图,很明显比我那个粗糙的SEM要清楚太多了。最下层同样是晶体管。

这张图上显示了Intel最新采用的Air Gap技术,图中黑色区域即是air gap。因为空气的K值近乎最低,此举有利于减小互联线之间的寄生电容,减小信号delay。

----------------------------------------------------------------------------------------------------------------------

同时在IEDM 2014上IBM也公布了SOI阵营的14nm技术,相比Intel的技术,IBM要更加fancy和复杂,估计成本也要高不少。

和Intel的体硅(Bulk Si)技术不一样,IBM采用的是绝缘体上硅(SOI)上的3D晶体管。

--------------------------------------------------------------------------------------------------------------------------

关于7nm以后的technology node,其实工业界也是莫衷一是,Wiki上认为5nm(

5 nanometer

)将是Moore‘s Law的尽头,但Intel也有大牛表示FinFET技术可以把Moore’s Law 推展至3nm(

Moore's Law Dead by 2022, Expert Says

7nm, 5nm, 3nm: The new materials and transistors that will take us to the limits of Moore’s law

).

----------------------------------------------------------------------------------------------------------------------------

关于提到的EUV(极紫外)光刻技术,其采用波长为13.5nm的紫外光用于光刻,因为波长远小于当前使用的193nm光源,因为光的衍射带来的精度问题将大大减小,但小波长意味着非常高的能量(正比于光波的频率,反比于波长),因此如何得到稳定、合适、大功率的光源是一个极难的问题,同时因为极小的波长,普通用于聚焦的透镜将无法使用,只能使用反射式透镜,这也是一个极难的问题。据说目前TSMC 非常看好此项技术,已经入手好几台了,只是Intel仍然按兵不动,据说还要接着弄multiple patterning。

贴一张图,给大家一个简单的认识, ASML的某个型号的EUV光刻机,猜测是NXE 33XX的某个型号。售价120 Million Dollar,合人民币7.2亿元,需要动用波音747 运输11架次才能从荷兰运抵目的地。半导体产业是知识密集型,资本密集型工业,只有大佬们玩得起。


user avatar   ai-tao-2 网友的相关建议: 
      

9月21日,美国总统拜登在和英国首相约翰逊的会面中,突然毫无预兆的要求记者清场,而在那段现场的视频中,似乎有一记者问了一句:“Did he shit?”(“他是不是拉了?”),而旁边的另一位记者回道:"I have no idea,hope the microphone got it。"(“我也不知道,但愿麦克录到了。”)

这段视频流出之后,全世界的舆论场都炸了锅,人们纷纷怀疑,已经是80高龄的拜登,是否在这样严肃的场合,一个不小心,拉在了裤子里,所以才会突然要求清场,而现场的记者是闻到了味道或者听到了声音,才会有此一问。

这个看似荒谬的猜测,却意外的流传极广,以至于向来标榜言论自由的外网都开始大量封杀此类帖文,而美国官方也很快出来辟谣说清场跟总统拜登的身体情况无关,只是出于政治和外交因素,两位领导人必须密谈。

但网民们可不管这么多,美国政府越是删帖和澄清,他们就越是对拜登的“脱粪”深信不疑,传言越传越是有板有眼,之前俄罗斯总统普京的那句“祝他身体健康”也被拉出来反复分析,进一步佐证了拜登的“失禁症状”。

这个曾经代表着“战无不胜,众望所归”的超级大国和世界第一强国,居然以如此不体面的方式迎来了舆论的毁灭性打击,这让许多美国的敌人和反对者都大为诧异。

然而,冷静下来思考,我们会发现,这其中疑点颇多,因为在那段广为流传的视频中,第一位记者在提出疑似脱粪的疑问之后,另一位记者给她的回复是“我希望麦克风录了下来”,如果真的是拉裤子这种事情,被麦克风录下来的可能性实在太小,还不如说希望摄像头拍到了。

即便退一万步,认定确实是拜登没有控制住大小便,但其实他作为一个80岁的老人,出现这种情况也并不稀奇,衰老并不是罪恶,也不至于为此如此残酷的嘲笑一位老人。

因此,拜登如今的被群嘲,可以说只是美国国力衰退的一个缩影,无论拜登是否真的大小便失禁,但他作为美国总统,领导着这个衰退的美国一路火花带闪电的跌下了神坛,曾经的荣耀必然会一道一道全部化作孽力反馈回他的身上。

简而言之就是,如果美国今日没有从阿富汗撤军,新冠也已经完全被控制,那么拜登就是拉的到处都是,也依然会有人跪舔说他这就像廉颇“一饭三遗矢”,是有大将之风,可当美国撤出阿富汗,新冠病死七十万之后,哪怕他这位总统日日正襟危坐,我们也总会怀疑,他屁股底下,是不是粘着什么不雅的东西。​

这,就是今日的世界,就是美国从“谁也打不过”到“谁也打不过”之后,所必须要面对的残酷现实啊。


user avatar   Wingo.Wang 网友的相关建议: 
      

1分钟了解芯片制造过程




  

相关话题

  阻抗就是电阻吗?如果是,为什么不直接叫电阻? 
  386处理器的64TB的虚拟寻址空间,对我们的使用,有什么现实意义吗? 
  2021年了,还有人认为英特尔(Intel)处理器比超威半导体(AMD)的稳定吗? 
  如何用9V电池设计一个0~5V可调电压源(要求只用模拟电路实现)? 
  有消息称台积电获得向华为供货许可,如何看待这一消息? 
  一个芯片产品从构想到完成电路设计是怎样的过程? 
  光刻机 10 万多个零件,有没有中国制造的零部件? 
  如果我国实现 28nm 芯片全产业链国产化,能够满足国内多少比例的芯片供应? 
  intel的cpu在AMD锐龙三代的竞争下还会如以往保值吗? 
  软银同意以400亿美元将ARM(安谋)出售给英伟达,但交易需中美等国家(组织)批准,后续进展会如何? 

前一个讨论
9月1日首艘国产航母山东舰离港,意味着什么?
下一个讨论
cpu是怎么制造的?





© 2024-05-17 - tinynew.org. All Rights Reserved.
© 2024-05-17 - tinynew.org. 保留所有权利