更新:本方法的论文已被二区期刊Neural Networks接收发表,论文题目:Visualizing Deep Neural Network by Alternately Image Blurring and Deblurring 。
以下为原答案:
我是
GitHub - happynear/DeepVisualization
的作者,上周末看到报道里面美轮美奂的图片,就想自己也搞一下。后来看到 @贾扬清 大神说其实就是加了个先验,好像很简单的样子(大神说简单就像学霸说考试考砸了一样不可信),于是就毅然跳坑了。
先是参照文献1,用caffe的matlab接口实现了梯度上升算法。这里简单地解释一下吧,神经网络可以看作是一个函数,输入图像,输出各类别的概率:
如果想提升某一类的输出概率,把这一类的梯度设置为1,其他类设置为0,然后将梯度反向传播回去,就得到了,通过梯度上升法,不断迭代
最终就能得到使目标类别的概率极大化的图像。
然后坑来了,这样得到的图像完全是噪声,而这个噪声的分类置信度竟然无限接近于100%。。因此也有了文献1所说的“神经网络很容易被戏弄”一说。而google所做的,就是要使生成的图像尽量接近我们平时所看到的那些图像,也就是 @贾扬清大神所说的加正则。
在查阅了许多神经网络可视化、图像去模糊、超像素方向的文章之后,发现大家普遍使用的正则有如下几个:
其中1、2两项确实非常有效,在我当前最新版本的程序中也包括了这两项,其实我还试了很多别的正则项,但效果并不明显,就不在这里说了。
最后我做出的效果,只有第一个任务,即从噪声中生成图像的结果:
蚂蚁:
巨石:
海星:
跟google的相比,我生成的图像背景更加丰富,但在颜色上感觉有一些失真。当然,展示给大家的只是效果比较好的几张,还有好多完全无法辨认的我就不献丑了(逃
因为我希望将这个方向深入做下去,所以有些技术细节我也不方便讲了。大神太多,以我写paper的速度,肯定会被别人赶超的。
2015/6/26
生成了一张大图:
多类别在同一张图里:
珊瑚+海星(珊瑚只占据了左上角):
参考文献:
1、Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images