题主的问题是一个看似简单,实际相当复杂的问题、又非常有趣的问题。
这个问题的实质是:为什么人体在能量不足的状态下,不用分解脂肪的能量来增肌。
我大致看了下所有的答案,大多数都不靠谱,方向也不正确。
有几个稍微靠谱点的答案提出“蛋白质也会参与分解供能”的说法,虽然不能说是完全错,但也过于粗浅,也不触及问题的本质。
要把这个问题说清楚,必须涉及一些生物学基础知识,这可能对于一般的健身爱好者来说有点偏深了。但是这些内容,也是基础知识,对大家有好处。
人体的肌纤维,大致是下面这样的样子。
肌纤维中,有一些更细的结构,叫肌原纤维,也就是图中右上角的myofibrils,肌原纤维的内部是肌蛋白[35,36]。
爱好者们经常说,你增肌了,或者你肌肉围度掉了,其实这就是因为肌原纤维中的蛋白质增加了[37]、或者减少了[75]。
当然,肌原纤维中的蛋白质有很多种[76,77],本文不详细介绍,就用一个“肌蛋白”来统称。
人活着,有生命。
生命的基本特征是新陈代谢[78]。
新陈代谢的重要特征之一,就是不断更新组织:
旧的组织不断死亡(被分解)[79],新的组织不断产生(被合成)。
在我们的肌肉中也是一样,肌肉大小取决于肌肉中的蛋白质分解和合成的差值[1]。
在常态下,它们不断被分解、不断被合成,维持平衡,我们的肌肉大小就不变。
合成>分解=正平衡=增肌=肌纤维变粗
分解>合成=负平衡=减肌=肌纤维变细
在训练的刺激下,平衡被打破,合成大于增长[2,98,99],就体现为增肌了。
但是,能刺激肌肉合成的刺激源,不光有训练。
我前不久才写的文章中列举了8大量证据表明,摄入蛋白质,也是一种增肌的刺激源。
以DNA为开端,制造出来的。
怎么制造呢?主要步骤两步。
步骤一:DNA转录
大家都知道,DNA是双螺旋结构的。
在转录过程中,它以自身为蓝本,复制出自身的单螺旋结构:mRNA[80]。
mRNA是在细胞核内产生的,会从核上的孔出去,进入细胞质。
步骤二:mRNA翻译
在细胞质中,mRNA作为模板,接受身体(实际上是tRNA)运来的氨基酸[81]。
这些氨基酸能识别mRNA上的特定识别区,从而精准的对号入座,组装成蛋白质的雏形。
下面是个示意图,真实的蛋白质具有更复杂的空间结构。
然后,还要经过折叠、加工、运载、修饰,才成为我们的肌蛋白[82]。
所以:肌肉中的蛋白质是怎么来的?
用DNA作为合成的起点,给造出来的。
答案是,有什么东西(刺激源)刺激了它。
常见的刺激源包括:
1、训练[68,69,70]
2、营养[40,41,47,48,49,50,51,66,67]
3、激素[42,43,44,45,46]
所以我们说,训练也好,营养也好,激素也好,性质是一样的:
都是通过刺激DNA的表达,来得到更多的肌肉(肌蛋白)。
这就解释了为什么,健美圈子的人都说“不行的人,给他一吨药他也不行”;
这就解释了为什么,有些狂热的爱好者甚至会超过冠军们的剂量,但是他们成不了冠军。
这其中的原因,就在于DNA。
药物和训练还有营养,都通过刺激DNA(的表达)来生效;
它们只是刺激源,DNA对刺激的反应才是关键。
面对同样强度的刺激,不同的人的DNA产生的反应截然不同;
经历了同样的训练,有些人的增肌效果是另外一些人的几倍甚至十几倍之多。
1、以训练为例:
(1)训练的物理刺激(机械刺激),通过生物传感器;
(2)生物传感器们,将这些刺激转化为细胞内的信息号;
(3)这些信号最终传递到DNA上,引起了DNA的转录;
(4)然后mRNA翻译为蛋白质。
所以,我们说,训练实际上是在刺激DNA,因为DNA才是生命活动的中心。
2、生物传感有哪些呢?
(1)肋节(Costameres)
肋节(Costamere)能将肌细胞膜与肌原纤维、细胞外基质、还有肌纤维上特点的点位(肌节)连接起来[3],加强肌细胞膜的稳定性和强度[4],在一定程度上保护它们免收外力损伤[5]。
肋节能感受、侦测到施加于及细胞的外力(例如我们所说的机械张力),将其传导到肌细胞内部,转化为生物信号[6,7]。
(2)71整合素(α7β1-integrin)
71整合素是一种横跨细胞膜的受体,它富含于骨骼肌中,它在基膜和肋节(Costamere)中的一些蛋白间,提供一种连接作用[8]。
一方面,它增加肌细胞与细胞外基质的 “粘附” ,增加细胞的稳定性;另一方面,它能将机械(训练外力)和化学信息从细胞外传递到细胞内,它在机械刺激(训练)转化为生物信号传递过程中,发挥了重要作用[9,10]。
还有磷脂酸(PA)、FAK—粘着斑激酶等也参与机械张力转化为细胞信号的传导传导,就不多说了。
从跨膜或细胞膜外的生物传感器到DNA之间,还有很长一段路要走。
我们在本文大致简介最基础、最重要、最著名的路径之一:
PI3K-Akt-mTOR途径[38,39,71,72,73]。
如图所示,在这条通路中,一般首先激活PI3K,然后是Akt,然后是mTOR[52,53,54,55,56]。
在mTOR的下游,有2个因子,分别是S6K(S6激酶)[57,58,59]和4E(真核生物起始因子4E)[60,61]。
S6K和4E能激活DNA转录(图中红色方框),从而引发蛋白质合成[62,63,64,65]。
这其中的重点,是mTOR。
mTOR是我们细胞内的一种蛋白,全称是“哺乳动物雷帕霉素靶蛋白”。
它由2549个氨基酸组成的大蛋白,预测它的分子量是28.9万道尔顿[11]。
但是,尺寸排除色谱法(SEC)显示它的分子量为1-2百万道尔顿[12],这说明它实际上存在于一些大得多的蛋白复合物中。
进一步的分析表明,mTOR实际上以mTORC1(复合物1)和mTORC2(复合物2)的形式在我们体内存在。
mTORC1下游有2个因子:
S6激酶(p70S6K)和真核生物起始因子4E(4EBP-1),图中倒数第二行的小红圈。
在这张图上,大家可以看到,最大的红圈就是mTOR的大型复合物mTORC1;
它的下游有2个靶点,左边的小红圈是S6K(S6激酶),右边的小红圈是4E-BP(真核生物起始因子4E-结合蛋白)。
在这张图上,还有个红色方框,翻译过来就是转录(DNA转录)。
1、mTORC1可以激活它的下游因子。
1999年,Baar等人发现大鼠的抗阻训练可以激活它们的S6激酶,并造成增肌[26]。怎么激活S6激酶的呢?
训练的物理刺激(机械张力)可以激活mTORC1[13,14,15,16,17,18],然后激活其下游的S6激酶。
所以S6激酶是mTORC1的下游因子。
2、怎么激活呢?
通过“磷酸化”[96]。
磷酸化是一个生化术语,是自然界一种非常普遍的、对蛋白质进行化学修饰的过程。
在磷酸激酶的作用下,生物将磷酸基团加在蛋白质或蛋白类中间产物上,从而将蛋白质磷酸化(或者去磷酸化)。
经化学修饰后的蛋白质,功能/生物活性会显著不同。
S6激酶是重要的DNA转录起始因子[19]。
它被激活后,接下来核糖体蛋白6被磷酸化,从而增加了核糖体蛋白与5‘端寡核苷酸(5’-top)mRNA的亲和力,引起了DNA转录[90,91,92];
而蛋白质不足则可以导致核糖体蛋白6的去磷酸化[92]。
3、mTORC1的下游因子不止一个
大家在图9和图11中看到,mTORC1的下游,除了S6激酶外,还有一个4E-BP。
4E,指的是真核生物起始因子4E[20,21]。
图上写的是4E-BP,它是4E-结合蛋白的缩写,这种蛋白“包裹”着4E,让它平时处于“不可用”状态,不发挥作用,就有点像粽子外面包裹的叶子一样。
磷酸化4E-BP后,就像拨开了粽子的叶子,粽子(4E)就暴露出来了。
接下来,4E与mRNA上的5′端帽结构相互作用,激发转录[22,23]。
也就是说,机械张力激活了mTORC1后,也导致了它的下游因子S6和4E-BP被磷酸化,然后引发了DNA的转录,然后我们得到了更多肌蛋白。
如果我们用上面的内容,把图7中的细胞信号替换掉的话,就是这样的概念:
不出意外,Dreyer等人发现,如果抑制mTOR信号,则会抑制肌肉蛋白质合成[74]。
所以,mTORC1的激活、S6相关蛋白的磷酸化,对于肌肉合成来说,来说非常重要[87]。
Ger等人的研究发现,S6磷酸化水平与1RM深蹲成绩、整体去脂体重、腿部瘦体重、IIA型肌纤维横截面积等,都存在极强的正相关性。
我们离题主的问题的答案,已经越来越近了。
mTOR作为调节细胞分裂、生长、细胞尺寸的重要途径,它具有“能量敏感性”。
Dennis等人证实mTOR信号通路受细胞内ATP浓度的影响[34]。
那么,mTOR信号通路是如何被细胞能量水平影响的?
大家应该还记得:
1、人类的细胞自能使用ATP系统作为直接能量来源;
2、其他能量系统(CP、无氧糖酵解、有氧氧化系统等)都只能为ATP充能。
3、如果把ATP比喻为是充满了能量的电池,那AMP就是空电池。
所以,空电池与满电池的比值(AMP/ATP)的比值,就反映了细胞能量水平。
当细胞能量水平较低时,AMP多,ATP少。
此时,人体会激活一种激酶:AMP活化蛋白激酶,这是人体感知能量水平的机制[95,96]。
这是AMP活化蛋白激酶的立体结构。
AMP活化蛋白激酶被激活后,它会抑制增肌所需的mTORC通路[89],如下图所示。
这个逻辑在生物学角度来说,也完全合情合理:
因为mTORC1驱动细胞生长、分化、增殖的过程,而这些行为会消耗大量的细胞能量。
如果人体面临总体上的能量不足,就必须把能量用于维持生命(心脏、脑等),而不能用于其它事情。
答案就是,细胞能量水平低,会激活AMP活化蛋白激酶,从而抑制mTOR,抑制肌蛋白DNA的转录/翻译。
这就解释了为什么有氧运动会抵消、减少力量训练带来的肌肉增长。
因为有氧耐力运动,会大量消耗ATP,从而产生更多的AMP,激活AMP活化蛋白激酶。
这也解释了为什么有氧运动前、中、后持续补糖,有利于肌肉的留存。
现在我们倒回来看题主的问题:人能不能大量分解自身脂肪,用这些能量来合成肌肉?
答案是不能,或者非常难。
因为人要大量分解自身脂肪,有个前提:能量不足。
例如在血糖/肝糖较低时候,身体分泌更多的胰高血糖素、皮质醇等,加速对脂肪的分解。
在这种情况下,mTOR信号通路被抑制,它下游的S6激酶、S6核糖蛋白、真核生物起始因子4E等被去磷酸化。
因此我们很难增肌,肌肉合成会小于分解,出现肌肉的“负平衡”。
这就是为什么人体很难动用自身脂肪来增肌。
这就是为什么,增肌和减脂之间存在明显的矛盾。
那为什么新手可以增肌同时减脂呢?
我们在前面已经提到了Atk、S6K(S6激酶)、rpS6(S6核糖蛋白)在mTOR信号通路中的激活,表现为磷酸化。
数据告诉我们,新手和老手接受训练后,mTOR通路中的磷酸化水平不一样。
(1)对人类的实验发现,2个多月训练后,新手的Akt、S6K的磷酸化持续时间比老手要长;
(2)另一项研究发现,职业举重运动员进行训练后,他们的S6K、rpS6磷酸化没有增加——但与之形成鲜明对比的是,未经训练的人的相应蛋白,则在训练后的发生了明显的磷酸化。
这些数据解释了:
——因为mTOR路径上相应蛋白(酶)的磷酸化程度存在差异。
这如果觉得好,不希望传播知识的文章埋没在营销广告中,请点赞、转发、留言。
你们的支持会是我继续输出内容的动力,感谢大家!
肉崽:力训研究所新手指南(十二)为什么分化训练不适合普通人(上)
肉崽:力训研究所新手指南(十三)为什么分化训练不适合普通人(中)
肉崽:力训研究所新手指南(十四)为什么分化训练不适合普通人(下)
肉崽:被误解最多的健美训练要素(四):变换动作给予肌肉新刺激
肉崽:被误解最多的健美训练要素(五):依据肌纤维类型针对训练
“肌肉在休息的时候超量生长”,其中关于“休息”的定义是睡觉吗?
如果你每天睡眠时间只有6个小时,你是否愿意拿出半个小时锻炼身体?
为何一天1小时的力量+高强度无氧+1小时有氧跑,已坚持近半个月既没减脂又没增肌?
为何一天1小时的力量+高强度无氧+1小时有氧跑,已坚持近半个月既没减脂又没增肌?
1. Atherton PJ, Phillips BE, Wilkinson DJ.Exercise and Regulation of Protein Metabolism.Prog Mol Biol Transl Sci. 2015;135:75–98.
2. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR.Mixed muscle protein synthesis and breakdown after resistance exercise in humans.The American journal of physiology. 1997;273(1 Pt 1):E99–107.
3. Luisa Gorza; Matteo Sorge; Laura Seclì; Mara Brancaccio.Master Regulators of Muscle Atrophy: Role of Costamere Components.Cells 2021, 10(1), 61.
4. Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 1990;345:315–9.
5. Clark KA, McElhinny AS, Beckerle MC, Gregorio CC. Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 2002;18:637–706.
6. Judice CC, Marin TM, Franchini KG. Calcium and the mechanotransduction in cardiac myocytes. Front Biosci (Elite Ed) 2009;1:189–99.
7. Samarel AM. Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol 2005;289:H2291–301.
8. Berthier C, Blaineau S. Supramolecular organization of the subsarcolemmal cytoskeleton of adult skeletal muscle fibers. A review. Biol Cell 89: 413–434, 1997.
9. Di Mauro D, Gaeta R, Arco A, Miliardi D, Lentini S, Runci M, et al. Distribution of costameric proteins in normal human ventricular and atrial cardiac muscle. Folia Histochem Cytobiol 2009;47(4):605–8.
10. Vatta M, Sinagra G, Brunelli L, Faulkner G. Remodeling of dystrophin and sarcomeric Z-band occurs in pediatric cardiomyopathies: a unifying mechanism for force transmission defect. J Cardiovasc Med (Hagerstown) 2009;10(2):149–56.
11. Sabers CJ, Martin MM, Brunn GJ et al.Isolation of a Protein Target of the FKBP12-Rapamycin Complex in Mammalian Cells.The Journal of biological chemistry. 1995;270(2):815–22.
12. Kim D-H, Sarbassov DD, Ali SM et al.mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery.Cell. 2002;110(2):163–75.
13. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014 – 1019, 2001.
14. Goodman CA, Miu MH, Frey JW, Mabrey DM, Lincoln HC, Ge Y, Chen J, Hornberger TA. A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Mol Biol Cell 21: 3258 –3268, 2010.
15. Hornberger TA, McLoughlin TJ, Leszczynski JK, Armstrong DD, Jameson RR, Bowen PE, Hwang ES, Hou H, Moustafa ME, Carlson BA, Hatfield DL, Diamond AM, Esser KA. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth. J Nutr 133: 3091–3097, 2003.
16. Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, Chin ER, Esser KA. Mechanical stimuli regulate rapamycin-sensitive signaling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 380: 795–804, 2004.
17. Kubica N, Bolster DR, Farrell PA, Kimball SR, Jefferson LS. Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bepsilon mRNA in a mammalian target of rapamycin-dependent manner. J Biol Chem 280: 7570 –7580, 2005.
18. Miyazaki M, McCarthy JJ, Fedele MJ, Esser KA. Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling. J Physiol 589.7: 1831–1846, 2011.
19. Satoshi Fujita, Hans C Dreyer, Micah J Drummond, Erin L Glynn, Jerson G Cadenas, Fumiaki Yoshizawa, Elena Volpi, Blake B Rasmussen.Nutrient signalling in the regulation of human muscle protein synthesis.J Physiol. 2007 Jul 15;582(Pt 2):813-23.
20. Kimball SR, Jefferson LS, Fadden P, Haystead TAJ, Lawrence JC 1996 Insulin and diabetes cause reciprocal changes in the association of eIF-4E and PHAS-I in rat skeletal muscle. Am J Physiol 270:C705–C709.
21. Pause A, Belsham G, Gingras AC, Donze O, Lin TA, Lawrence JC, Sonenberg N 1994 Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5-cap function. Nature 371:762–767.
22 Higbie EJ, Cureton KJ, Warren GL 3rd, Prior BM. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol 81: 2173–2181, 1996.
23. Hornberger TA, Armstrong DD, Koh TJ, Burkholder TJ, Esser KA. Intracellular signaling specificity in response to uniaxial vs. multiaxial stretch: implications for mechanotransduction. Am J Physiol Cell Physiol 288: C185–C194, 2005.
24. Zanchi NE, Lancha Jr AH. Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis. Eur J Appl Physiol 2008;102:253–63.
25. Klossner S, Durieux AC, Freyssenet D, Flueck M. Mechano-transduction to muscle protein synthesis is modulated by FAK. Eur J Appl Physiol 2009;106:389– 98.
26. Baar K, Esser K.Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise.The American journal of physiology. 1999;276(1 Pt 1):C120–7.
27. Oldham, S., J. Montagne, T. Radimerski, G. Thomas, and E. Hafen.2000. Genetic and biochemical characterization of dTOR, theDrosophilahomolog of the target of rapamycin.Genes Dev.14:2689-2694.
28. Zhang, H., J. P. Stallock, J. C. Ng, C. Reinhard, and T. P. Neufeld.2000. Regulation of cellular growth by theDrosophilatarget of rapamycin dTOR.Genes Dev.14:2712-2724.
29. Fingar, D. C., S. Salama, C. Tsou, E. Harlow, and J. Blenis.2002. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E.Genes Dev.16:1472-1487.
30. Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, Thomas G.DrosophilaS6 kinase: A regulator of cell size.Science.1999;285:2126–2129.
31. Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E. Genetic and biochemical characterization of dTOR, theDrosophilahomolog of the target of rapamycin.Genes & Dev.2000;14:2689–2694.
32. Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. Regulation of cellular growth by theDrosophilatarget of rapamycin dTOR.Genes & Dev.2000;14:2712–2724.
33. Miron M, Verdu J, Lachance PE, Birnbaum MJ, Lasko PF, Sonenberg N. The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth inDrosophila.Nat Cell Biol.2001;3:596–601.
34. Diane C Fingar, John Blenis.Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression.Oncogene
. 2004 Apr 19;23(18):3151-71.
35. N Narayanan, J Eapen.Protein synthesis by rat cardiac muscle myofibrils.Biochim Biophys Acta. 1973 Jun 23;312(2):413-25.
36. Kono,Fumiaki,Shimamoto,Yuta,Ishiwata,Shin'ichi.1P246 Effect of lattice spacing on SPOC of skeletal myofibrils(8. Muscle contraction and muscle protein,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)
37. D L, Pak-Loduca, K A Obert, KE Yarasheski.Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78-84 and 23-32 yr olds.Am J Physiol Endocrinol Metab. 2000 Apr;278(4):E620-6.
38. Dreyer HC, Fugita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen B (2006) Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol 576:613–624
39. Kubica N, Bolster DR, Farrell PA, Kimball SR, JeVerson LS (2005) Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2B mRNA in a mammalian target of rapamycin-dependent manner. J Biol Chem 280:7570– 7580
40. S R Kimball.Regulation of translation initiation by amino acids in eukaryotic cells.Prog Mol Subcell Biol . 2001;26:155-84. doi: 10.1007/978-3-642-56688-2_6.
41. Karlsson HK, Nilsson PA, Nilsson J, Chibalin AV, Zierath JR, Blomstrand E (2004) Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. Am J Physiol Endocrinol Metab 287:E1–E7
42. DeVol, D. L., Rotwein, P., Sadow, J. L., Novakofski, J., & Bechtel,P. J. (1990). Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am. J.Physiol., 259, E89–E95.
43. Vandenburgh, H. H., Karlisch, P., Shansky, J., & Feldstein, R.(1991). Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am. J. Physiol., 260, C475–C484.
44. Florini JR, Ewton DZ, Coolican SA. Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 17:481–517, 1996.
45.Rommel C., Bodine S.C., Clarke B.A., Rossman R., Nunez L., Stitt T.N., Yancopoulos G.D., Glass D.J. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol. 2001;3:1009–1013.
46.Peng X.D., Xu P.Z., Chen M.L., Hahn-Windgassen A., Skeen J., Jacobs J., Sundararajan D., Chen W.S., Crawford S.E., Coleman K.G., et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev. 2003;17:1352–1365.
47. Douglas Paddon-Jones 1 , Melinda Sheffield-Moore, Xiao-Jun Zhang, Elena Volpi, Steven E Wolf, Asle Aarsland, Arny A Ferrando, Robert R Wolfe.Amino acid ingestion improves muscle protein synthesis in the young and elderly.Am J Physiol Endocrinol Metab. 2004 Mar;286(3):E321-8.
48. K Smith, J M Barua, P W Watt, C M Scrimgeour, M J Rennie.Flooding with L-[1-13C]leucine stimulates human muscle protein incorporation of continuously infused L-[1-13C]valine.Am J Physiol. 1992 Mar;262(3 Pt 1):E372-6.
49. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr. 2003;78:250–8.
50. P J Garlick, I Grant.Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids.Biochem J. 1988 Sep 1;254(2):579-84.
51. Koopman R, Crombach N, Gijsen AP, et al. Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. Am. J. Clin. Nutr. 2009; 90:106Y15.
52. Rommel C., Bodine S.C., Clarke B.A., Rossman R., Nunez L., Stitt T.N., Yancopoulos G.D., Glass D.J. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol. 2001;3:1009–1013.
53. Peng X.D., Xu P.Z., Chen M.L., Hahn-Windgassen A., Skeen J., Jacobs J., Sundararajan D., Chen W.S., Crawford S.E., Coleman K.G., et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev. 2003;17:1352–1365.
54. Bodine S.C., Latres E., Baumhueter S., Lai V.K., Nunez L., Clarke B.A., Poueymirou W.T., Panaro F.J., Na E., Dharmarajan K., et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704–1708.
55. Pallafacchina G., Calabria E., Serrano A.L., Kalhovde J.M., Schiaffino S. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc. Natl. Acad. Sci. USA. 2002;99:9213–9218.
56. Glass D.J. Molecular mechanisms modulating muscle mass. Trends Mol. Med. 2003;9:344–350.
57. Pallafacchina, G., Calabria, E., Serrano, A. L., Kalhovde, J. M.,& Schiaffino, S. (2002). A protein kinase B-dependent and rapamycin- sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc. Natl. Acad. Sci. U.S.A.,25.
58. Inoki, K., Li, Y., Zhu, T., Wu, J., & Guan, K. L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling.Nat. Cell. Biol., 4, 648–657.
59. Hannan, K. M., Thomas, G., & Pearson, R. B. (2003). Activation of S6K1 (p70 ribosomal protein S6 kinase 1) requires an initial calcium-dependent priming event involving formation of a highmolecular-mass signalling complex. Biochem. J., 370, 469–477.
60. Kimball SR, Jefferson LS, Fadden P, Haystead TAJ, Lawrence JC 1996 Insulin and diabetes cause reciprocal changes in the association of eIF-4E and PHAS-I in rat skeletal muscle. Am J Physiol 270:C705–C709.
61. Pause A, Belsham G, Gingras AC, Donze O, Lin TA, Lawrence JC, Sonenberg N 1994 Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5-cap function. Nature 371:762–767.
62.Gruner S., Peter D., Weber R., Wohlbold L., Chung M.Y., Weichenrieder O., Valkov E., Igreja C., Izaurralde E. The structures of eIF4E-eIF4G complexes reveal an extended interface to regulate translation initiation. Mol. Cell. 2016;64:467–479.
63. Kubica, N., Bolster, D. R., Farrell, P. A., Kimball, S. R., & Jefferson,L. S. (2005). Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2B{epsilon} mRNA in a mammalian target of rapamycin-dependent manner.J. Biol. Chem., 280, 7570–7580.
64. Proud CG, Denton RM 1997 Molecular mechanisms for the control of translation by insulin. Biochem J 328:329–341
65. Kleijn M, Scheper GC, Voorma HO, Thomas AA 1998 Regulation of translation initiation factors by signal transduction. Eur J Biochem 253:531–544.
66. Jeffery Escobar, Jason W Frank, Agus Suryawan, Hanh V Nguyen, Scot R Kimball, Leonard S Jefferson, Teresa A Davis.Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs.Am J Physiol Endocrinol Metab. 2006 Apr;290(4):E612-21.
67. J C Anthony, T G Anthony, S R Kimball, T C Vary, L S Jefferson.Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation.J Nutr. 2000 Feb;130(2):139-45.
68. Neil Kubica 1 , Douglas R Bolster, Peter A Farrell, Scot R Kimball, Leonard S Jefferson.Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bepsilon mRNA in a mammalian target of rapamycin-dependent manner.2005 Mar 4;280(9):7570-80. doi: 10.1074/jbc.M413732200. Epub 2004 Dec 10.
69. Dreyer HC, Fugita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen B (2006) Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol 576:613–624
70. Baar K, Esser K (1999) Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276:C120–C127
71. Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, Wackerhage H (2005) Selective activation of AMPK-PGC-1alpha or PKBTSC2-mTOR signaling can explain speciWc adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 19:786–788
72. Nader GA (2005) Molecular determinants of skeletal muscle mass: getting the AKT together. Int J Biochem Cell Biol 37:1985–1996
73. Tidball JG (2005) Mechanical signal transduction in skeletal muscle growth and adaptation. J Appl Physiol 98:1900–1908
74. Hyeong Tae Kwon, hyo jeong Kim, Chang Keun Kim. Korea National Sport University, Seoul, Korea, Republic of.The Early Mtor Signaling Responses To Resistance Exercise Stimuli In Skeletal Muscle In Well-trained Athletes .Board #114 June 5.
75. Ruowei, Li.The temporal control of load-dependent anabolic and catabolic pathways in human extensor muscles.Manchester Metropolitan University
76. S Winegrad.Myosin-Binding Protein C (MyBP-C) in Cardiac Muscle and Contractility.Molecular and Cellular Aspects of Muscle Contraction.
77. C M Rembold, R A Murphy.Myoplasmic calcium, myosin phosphorylation, and regulation of the crossbridge cycle in swine arterial smooth muscle.Circ Res. 1986 Jun;58(6):803-15.
78. SAS Gropper,JL Smith,J Groff.Advanced Nutrition and Human Metabolism.GROPPER, Sareen Annora Stepnick, Jack L. SMITH and James L. GROFF. Advanced nutrition and human metabolism. 5th ed. United States: Wadsworth/Cengage Learning, 2009. xvii, 600. ISBN 9780495116578.
79. T P Stein, M D Schluter.Human skeletal muscle protein breakdown during spaceflight.Am J Physiol. 1997 Apr;272(4 Pt 1):E688-95.
80. G Bertolesi,S Mcfarlane.DNA transcription.in: Kirch W. (eds) Encyclopedia of Public Health. Springer, Dordrecht.
81. M Rosenberg,D Court.Regulatory sequences involved in the promotion and termination of RNA transcription.Annu Rev Genet. 1979;13:319-53.
82. J Martin, F U Hartl.Molecular chaperones in cellular protein folding.Bioessays. 1994 Sep;16(9):689-92.
83. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994;369:756–758.
84. Chiu MI, Katz H, Berlin V. RAPT1, a mammalian homolog of yeast TOR, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci. 1994;91:12574–12578.
85. Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. 2000;103:253–262.
86. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes & Dev. 2001;15:807–826.
87. Dufner A, Thomas G. Ribosomal S6 kinase signaling and the control of translation.Exp Cell Res.1999;253:100–109.
88. Rohde, J., J. Heitman, and M. E. Cardenas. 2001. The TOR kinases link nutrient sensing to cell growth. J. Biol. Chem. 276:9583-9586.
89. Schmelzle, T., and M. N. Hall. 2000. TOR, a central controller of cell growth. Cell 103:253-262.
90. Jefferies H B J, Reinhard C, Kozma S C, Thomas G. Rapamycin selectively represses translation of the 'polypyrimidine tract' mRNA family. Proc Natl Acad Sci USA. 1994;91:4441–4445.
91. Jefferies H B J, Thomas G, Thomas G. Elongation factor-1α mRNA is selectively translated following mitogenic stimulation. J Biol Chem. 1994;269:4367–4372.
92. Thomas G, Thomas G. Translational control of mRNA expression during the early mitogenic response in Swiss mouse 3T3 cells: identification of specific proteins. J Cell Biol. 1986;103:2137–2144.
93. Balendran A, Biondi R M, Cheung P C, Casamayor A, Deak M, Alessi D R. A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta) and PKC-related kinase 2 by PDK1. J Biol Chem. 2000;275:20806–20813.
94. Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC, You JS, Hornberger TA. The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. J Physiol 589: 5485–5501, 2011.
95. Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8:774–785.
96. C S Rubin, O M Rosen.Protein phosphorylation.Annu Rev Biochem. 1975;44:831-87.
97. M J Hubbard , P Cohen.On target with a new mechanism for the regulation of protein phosphorylation.Trends Biochem Sci. 1993 May;18(5):172-7.
98. Tipton KD, Wolfe RR. Exercise, protein metabolism, and muscle growth. Int J Sport Nutr Exerc Metab. 2001;11:109–132.
99. Hornberger TA, Esser KA. Mechanotransduction and the regulation of protein synthesis in skeletal muscle. Proc Nutr Soc. 2004;63:331–335.