百科问答小站 logo
百科问答小站 font logo



如何计算CNN中batch normalization的计算复杂度(FLOPs)? 第1页

  

user avatar   quarrying 网友的相关建议: 
      

下面分析在推理 (或者说测试) 时 BN 层的计算量:

设 是BN层的输入, 其尺寸为 ; 是BN层的moving mean, 是BN层的moving variance, 是BN层的scale, 是BN层的shift, 它们的尺寸均为 . 为了简化推导, 设 , 并令 , , , , , . 则BN层的输出的第k个通道为:

, 式中 是全1矩阵(而不是单位矩阵), 是一个很小的正数, 防止除零的发生.

令 , 则 . 由于 都是已知的, 和 可以预先计算 (NCNN中就是这样做的[1]), 在推理时不会占用额外的计算时间, 于是 的计算量只有 次乘法运算和 次加法运算, 对于C个通道计算量则有 次乘法运算和 次加法运算. 这个计算量相对于一般卷积层的计算量是很小的. 对于一般卷积则需要 次乘法运算, 次加法运算(有偏置项) 或 次加法运算(无偏置项), 这些符号可以顾名思义, 这里就不赘述了, 详细的推导可以参考[2].

另外如果网络采用Conv-BN-ReLU的设置, 则BN的参数还可以折叠 (fold) 到前面的卷积层的参数中, 这时BN的计算被包含到卷积的计算中了.

参考

  1. ^ https://github.com/Tencent/ncnn/blob/c61a60bfc67fcc5d8cdce20ad2ab65ba19f2b6c8/src/layer/batchnorm.cpp#L36
  2. ^ https://zhuanlan.zhihu.com/p/137719986



  

相关话题

  PyTorch中在反向传播前为什么要手动将梯度清零? 
  百度在深度学习上使用Xilinx FPGA? 
  在集成电路设计领域(数字,模拟),人工智能有无可能取代人类? 
  如何评价 CVPR 2020的论文接收结果?有哪些亮点论文? 
  如何评价浪潮发布的2457亿参数源1.0智能大模型?与GPT-3相比如何?处于AI模型领域什么水平? 
  为什么deep lab v3起,输出不再接 DenseCRF了? 
  物理专业的学生如何看待机器学习和大数据这些方向呢? 
  请问人工神经网络中的activation function的作用具体是什么?为什么ReLu要好过于tanh和sigmoid function? 
  卷积神经网络中卷积核是如何学习到特征的? 
  如何评价 MSRA 最新的 Deformable Convolutional Networks? 

前一个讨论
CPU和GPU跑深度学习差别有多大?
下一个讨论
2020年CVPR有哪些优秀的论文?





© 2024-12-22 - tinynew.org. All Rights Reserved.
© 2024-12-22 - tinynew.org. 保留所有权利