百科问答小站 logo
百科问答小站 font logo



如何评价最近火热的对比学习,会引领预训练模型新的范式嘛? 第1页

  

user avatar   chen-jia-yu-65-36 网友的相关建议: 
      

引用lecun的一张图,谈一谈对CV和NLP中无监督预训练的看法

lecun通过Low dim -> High dim、Discrete -> Continuous和Less uncertainty -> More uncertainty三个维度来表示CV和NLP中不同无监督方法的位置。文本是离散的,不确定性低,维度低;而图像是连续的,不确定性高,维度高。模态的不同,导致了无监督的处理方式上的不同。

NLP任务因为确定性更高,生成式无监督预训练方法可以非常好进行预测(如BERT),而由于CV任务不确定性更高,导致需要设计更自由灵活的方法,对比方法相比于生成方法自由度更高,可能更加适合CV任务作为无监督预训练方法。

猜测未来NLP领域生成式和判别式会出现并存的局面,sentence级别任务倾向于使用判别式,word级别任务倾向于使用生成式。而CV领域判别式会占主导地位,一方面由于图像是二维的,生成式计算量会更庞大,另一方面判别式的自由度会更高一些。


欢迎关注Smarter,构建CV世界观,输出优质内容

欢迎加入Smarter交流群,添加微信「cjy094617」,备注「学校-方向」即可




  

相关话题

  消融实验是什么? 
  如何理解 Swin Transformer 和 Vision Transformer不同任务上的差异? 
  多模态方面,有哪些牛组值得我们follow他们的工作? 
  普通FPGA工程师怎样向人工智能靠拢? 
  在做算法工程师的道路上,你掌握了什么概念或技术使你感觉自我提升突飞猛进? 
  视觉算法的工业部署及落地方面的技术知识,怎么学? 
  为什么 Google 翻译只重算法不重语言学的语法结构和规则? 
  如何评价余凯在朋友圈发表呼吁大家用 caffe、mxnet 等框架,避免使用 TensorFlow? 
  2022 年人工智能领域的发展趋势是什么?你都有哪些期待? 
  什么是蒙特卡罗 Dropout(Monte-Carlo Dropout)? 

前一个讨论
如何系统地学习数据挖掘?
下一个讨论
为什么考研还这么多往生化环材土木水利的坑里跳的,是他们还没看见劝退文吗?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利