百科问答小站 logo
百科问答小站 font logo



DL/ML 模型如何部署到生产环境中? 第1页

  

user avatar   professor-ho 网友的相关建议: 
      

是时候给出我的文章了,如果你使用的神经网络框架是TensorFlow,那么TensorFlow Serving是你非常好的选择。目前本人用的是TensorFlow Serving + Docker + Tornado的组合,Docker非常易于部署任何模型,而Tornado负责处理高并发请求。

详细教程请移步查看我的文章:

如果你觉得有用,请先点赞再收藏。

另外,如果你使用的是其它神经网络框架,例如caffe、pytorch,我会推荐Nvidia的TensorRT Inference Server,它支持所有模型的部署,包括TF系、ONNX系、mxnet等等,TRT会先对你的网络进行融合,合并可以同步计算的层,然后量化计算子图,让你的模型以float16、int8等精度进行推理,大大加速推理速度,而你只需要增加几行简单的代码就能实现。而且TRT Inference Server能够处理负载均衡,让你的GPU保持高利用率。

日后有机会再写一篇TRT Inference Server的教程,这里先挖个坑,大家可以保持关注。

模型部署的方式越来越简单,许多大团队已经帮在帮我们简化部署的流程,以及提高部署的性能,我们只需要学会怎么用起来,剩下的就是写一些业务逻辑了,这为我们省下了大量的时间,专注于算法的研究。


--------19.1.27更新--------

现在又写了篇Mxnet Model Server的部署教程,大家可以参考学习:




  

相关话题

  《人工智能训练师国家职业技能标准》发布,有哪些值得关注的信息? 
  为什么有的论文放出训练好的模型和测试脚本,但不开源训练代码? 
  请解释下variational inference? 
  PyTorch中在反向传播前为什么要手动将梯度清零? 
  如何看待AI伦理科学家Timnit Gebru在邮件控诉谷歌缺乏种族多样性后被Jeff Dean炒掉? 
  深度学习领域有哪些瓶颈? 
  计算机视觉顶级会议论文中比较适合初学计算机视觉的人做的复现实验有哪些? 
  如何看待 AlphaFold 在蛋白质结构预测领域的成功? 
  计算机视觉是否已经进入瓶颈期? 
  如何证明马尔科夫链一定会达到稳态? 

前一个讨论
SQLite 的读写效率很高,有哪些使用其他数据库的理由?
下一个讨论
如何看待《工作细胞 第一季》将在2021年2月13日于CCTV-6播出?





© 2025-04-05 - tinynew.org. All Rights Reserved.
© 2025-04-05 - tinynew.org. 保留所有权利