百科问答小站 logo
百科问答小站 font logo



2021年深度学习在哪些应用上有实质进展? 第1页

  

user avatar   rewrgf 网友的相关建议: 
      

任意题材作诗

论资本主义
若为自由故,如今逐利逃。
入城操法律,两股战空槽。
漂白藏珠玉,欢呼夺锦袍。
管窥矜势利,夸视堕尘劳。


一美元炸鸡
精肉蘸浓盐,外焦里嫩香。
将军嫌酒贵,不敢对厨娘。
小吃称珍味,中餐愧上光。
纵然川菜好,难敌此鸡强。


比特币
外挖无穷洞,机神犹未休。
卡中窥币影,池里验沙流。
屡载吸金主,孤深渍盗求。
方知区块链,本是古来游。


咏托卡马克装置
万物托空无,千钧压几重。
钛棱缘铁壁,玉粒耀银钟。
利用核能转,波形巧亦功。
翻身天地震,核腹贮其中。


观美国大选
观望白宫前,森罗万象兴。
宣推川普主,光照玉阶庭。
听决蓝区后,斧开血路行。
群臣皆俯首,膜拜圣明情。

悟道作诗


user avatar   bo-er-de 网友的相关建议: 
      

说个冷门而简单的。来自德国一家激光加工公司的企业博士(类似于国内的在职博士)。内容来源是他在我们所交流时做的presentation。

故事背景比较长。激光切割是一种金属加工工艺。在切割的时候需要确定一些工艺参数,例如激光的焦点深度,进给量,保护气的气压等等。在加工过程中,这些参数可能会逐渐偏离设定值,导致工艺质量下降。消除这些误差必须对机器进行校准。但是,现有的技术无法对所有的工艺参数进行实时监控,许多数值只能停机之后进行确定。对于生产线而言,停机的成本巨大。因此,需要一种方法可以在不停机的前提下监测工艺参数,以及时安排校准工作。

这个博士的做法实际上非常直接:拍摄切割断面的照片,用CNN预测工艺参数。

技术层面简单到尴尬。他建立了自己的数据集。他魔改了一个VGG。他用最后的全联接输出直接回归了所有参数。他train了上去。他成了。在自建数据集上准确率喜人。

作为对照组,他找来了企业里的工艺专家和资深工人,让他们根据图片预测工艺参数。大部分人直接表示这不可能,拒绝给出答案。少部分人硬着头皮选了答案,准确率远低于神经网络。即使他向人类专家展示了全部训练集,人类专家也远达不到神经网络的准确率。

这是他的第一个贡献,一个专用数据集和一个远强于人类专家的工艺参数估计网络。

然后他又进了一步,用已有的可视化的方法,标记出了切割断面上对预测值贡献最大的区域(像素级标记)。有意思的来了,他向专家和工人们展示了少量可视化结果。结果专家和工人们根据图片预测工艺参数的准确率明显提升。

这是他的第二个贡献,用可视化的方法,让神经网络教会人类如何预测工艺参数。

最后的故事是,企业对成果十分重视,跟进了研发,后续准备投入生产。而这个博士自己收割了很多激光加工领域的论文(CNN的精度对该领域的传统方法是碾压)。

与那些凑trick刷SOTA,魔改attention,变花样讲故事的工作相比,这个博士的方法简单到辣眼睛。但是它就是在实际中work了,变成了实在的生产力。另外,自建数据集和大量的问卷调查也是极其耗费心力的。坚持做下来也是不容易。respect。

注:评论区有激光切割工程师。请大家参考专业意见。




  

相关话题

  如何评价AMD的AM5(即LGA1718)接口? 
  上学和读书有什么区别? 
  如何评价 DeepMind 发表在 Nature 上的使用深度强化学习对托卡马克等离子体进行磁控制? 
  你认为目前华为能逆盘反杀吗? 
  罗永浩发博称下一个创业项目是元宇宙,是在指什么? 
  如何理解深度学习中的deconvolution networks? 
  实验室一块GPU都没有怎么做深度学习? 
  苹果 VR/AR 设备有望 2022 年亮相,对此你有哪些期待? 
  反转?如何看待六家媒体致歉特斯拉? 
  GAN 真的创造了新的信息吗? 

前一个讨论
如何看待 5G 700M基站集采结果出炉,华为占六成份额?
下一个讨论
如何让所有人都有大豪斯?





© 2024-11-25 - tinynew.org. All Rights Reserved.
© 2024-11-25 - tinynew.org. 保留所有权利