百科问答小站 logo
百科问答小站 font logo



计算商品embedding然后平均得到用户embedding,会不会存在这种问题? 第1页

  

user avatar   huo-hua-de-41 网友的相关建议: 
      

问题的本质在于维数诅咒curse of dimensionality,你需要的是一个对于高维向量的正确图景。你想象中的情况是左边2维或者3维的情况,这个时候猫猫狗狗的确是混在一起的,取平均后会有“四不像”的情况。但实际上,embedding都是几百维,是高维向量。每个样本猫或者狗都存在于一个个尖尖上,几个尖尖取平均后,只会依然离这几个尖尖最近,能够保证“四都像”。


user avatar   chenran 网友的相关建议: 
      

因为在高维空间中的平均,会依然离原来的点特别近,离其他的点特别远?

我们假设这样一个情形,在空间中取4个点{A1..A4},取平均得A‘可以看作 User Embedding,再在空间中随机生成100个点{B1..B100}。我们计算A' 最近的点是在 {A1..A4} 中还是在 {B1..B100} 中。

在二维空间中特别明显,A‘ 大概率离B点集更近一些。我们跑个模拟,看看随着维度的变高,有什么变化。

可以看到,在低维度的时候,取平均会更像其他的 Item,但随着 Embedding 维度的增加,User Embedding 最近的点几乎全是A集中的点,依然在那几个 Item Embedding 的附近,而离其他的 Embedding 更远一些。

所以并不会是“四不像”,而是“四都像”。高维度和低维度上的直觉有时候很不同罢。




  

相关话题

  机器学习,深度神经网络等方法是否是正确的方向? 
  李航的统计学习方法,吴恩达的视频,关于机器学习的东西都看不懂是怎么回事? 
  迁移学习与fine-tuning有什么区别? 
  在NLP上,CNN、RNN(认为LSTM等变体也是RNN)、最简单全连结MLP,三者相比,各有何优劣? 
  请问机器学习中的预测与决策的区别是什么,他们的界限在哪里呢? 
  神经网络为什么可以(理论上)拟合任何函数? 
  如何看待在某度搜不到megengine官网? 
  如何评价 MXNet 被 Amazon AWS 选为官方深度学习平台? 
  如何看待百度无人车, 三千多个场景,一万多个if? 
  因果推断(causal inference)是回归(regression)问题的一种特例吗? 

前一个讨论
机械工程专业为什么要学 C 语言?
下一个讨论
如何自学数学以达到数学博士的水平?





© 2024-11-05 - tinynew.org. All Rights Reserved.
© 2024-11-05 - tinynew.org. 保留所有权利