百科问答小站 logo
百科问答小站 font logo



mxnet的并行计算为什么这么牛,是什么原理? 第1页

  

user avatar   james-82 网友的相关建议: 
      

个人理解

通过执行引擎来达到计算和收发的并行,例如后向时算完某一个参数的梯度后,执行引擎会立刻提交到发送队列中开始发送,这时候其他的后向计算还在进行中。

此外发送与接收的队列有优先级,时刻保证最高优先级参数的接收与发送

上述机制保证了对于较深的网络能够达到了很好的线性加速比,不过对于浅层网络,比如只有两层lstm的 encoder decoder这种方法的并行效果欠佳。

总的来说还是灰常牛逼滴!


user avatar   mli65 网友的相关建议: 
      

简单来说是当计算开销大于通讯开销时,通过并行两者可以达到将近线性的加速。

具体可参见 Sec 4.4 和 4.5

cs.cmu.edu/~muli/mu-the

ps: 这里有新的在256块GPU上的加速,和10台机器vs单机的收敛:




详细见:

dmlc/mxnet



  

相关话题

  有没有根据一张人物的立绘正面像,自动生成同风格各侧面角度像并自动衍生表情的软件啊? 
  Learning To Rank的pair wise方法如何得到全局排序结果呢? 
  图像处理和机器学习有什么关系? 
  现在tensorflow和mxnet很火,是否还有必要学习scikit-learn等框架? 
  如何评价 马毅教授 的 NeurIPS 2020 中稿文章 MCR2 及 自称弄明白深度学习了? 
  有哪些比较好的机器学习、数据挖掘、计算机视觉的订阅号、微博或者是论坛? 
  如何看待学霸君的高考机器人 Aidam 高考全国文科数学卷考了 134 分? 
  Yann LeCun、Geoffrey Hinton或Yoshua Bengio能得图灵奖吗? 
  为什么机器学习解决网络安全问题总是失败? 
  CPU和GPU跑深度学习差别有多大? 

前一个讨论
如何看待Jeff Dean&Hinton投到ICLR17的MoE的工作?
下一个讨论
如何评价 MXNet 被 Amazon AWS 选为官方深度学习平台?





© 2024-12-23 - tinynew.org. All Rights Reserved.
© 2024-12-23 - tinynew.org. 保留所有权利