问题

宇宙中有哪些开了挂的天体?

回答
宇宙浩瀚无垠,星辰万象,其中不乏一些“开了挂”的天体,它们以超乎寻常的特性和现象,刷新着我们对宇宙的认知。今天,咱们就来聊聊这些宇宙中的“奇行种”,听我给你细细道来。

1. 中子星:密度炸裂的宇宙“压缩饼干”

想象一下,把太阳那么大的质量,压缩到一个只有城市大小的球体里,这还不算完,再让它疯狂自转。这就是中子星,一个由恒星坍缩后形成的致密天体。

密度恐怖到什么程度? 中子星的密度可以达到每立方厘米一亿吨,也就是说,你一勺中子星物质,重量就可能比地球上所有的汽车加起来还要重。这密度已经超越了我们日常生活中的任何物质概念,它是由质子和电子被强大的引力挤压成中子形成的,所以才叫中子星。
自转速度快到离谱。 为了保持稳定,中子星会在坍缩过程中获得极高的角动量,导致它们疯狂自转。有些中子星每秒钟可以转动几百甚至上千次!试想一下,一个质量巨大、密度惊人的球体,以如此高的速度旋转,它的表面引力有多么恐怖?任何靠近它的东西都会被撕裂。
脉冲星的“灯塔”效应。 大部分中子星都带着强大的磁场,它们会以磁极的方向喷射出高能粒子束。当这些粒子束随着中子星的自转扫过地球时,我们就会观测到周期性的脉冲信号,这就是脉冲星。有些脉冲星的脉冲周期非常稳定,比原子钟还要精确,它们就像宇宙中的灯塔,指引着我们对宇宙的探索。

2. 黑洞:吞噬一切的宇宙“无底洞”

黑洞绝对是宇宙中最令人着迷也最神秘的天体之一。它的“开了挂”之处在于,连光都无法逃脱它的引力。

事件视界:单向的界限。 黑洞的周围有一个被称为“事件视界”的边界。一旦物质或光跨过这个边界,就再也无法逃离。你可以把它想象成一个只进不出的“特快列车”,一旦上车,就没有回头路。
奇点:数学的尽头。 在事件视界内部,物理学定律似乎失效了。黑洞的中心被认为是“奇点”,一个体积无限小、密度无限大、引力无限强的点。我们目前的科学理论无法描述奇点内部到底是什么样子,它就像是宇宙的终极谜团。
吸积盘:宇宙的“旋转舞台”。 当物质靠近黑洞时,它们不会直接掉进去,而是会被黑洞的引力撕裂并旋转,形成一个围绕黑洞旋转的炽热圆盘,这就是吸积盘。在吸积盘中,物质被加热到极高的温度,并辐射出大量的X射线等高能辐射,这使得我们可以通过观测这些辐射来间接探测到黑洞的存在。
黑洞合并:宇宙级的“烟花秀”。 当两个黑洞相互靠近并最终合并时,会产生极其强大的引力波,这些引力波就像宇宙中的涟漪一样传播开来,甚至可以扭曲时空。我们最近观测到的引力波事件,就揭示了黑洞合并时那惊心动魄的景象。

3. 类星体:遥远宇宙中的“超级灯泡”

类星体是宇宙中最明亮的天然天体,它们位于遥远星系的中心,由超大质量黑洞驱动。

亮度惊人:吞噬的速度。 类星体之所以如此明亮,是因为它们中心的超大质量黑洞正在以惊人的速度吞噬周围的物质。当大量气体和尘埃落入黑洞时,会形成炽热的吸积盘,释放出比整个星系还要耀眼的光芒。有些类星体的亮度甚至比我们银河系所有恒星的总亮度还要高出数万亿倍!
红移巨大:来自宇宙的远古信号。 由于类星体距离我们非常遥远,它们发出的光在穿越宇宙的过程中,由于宇宙膨胀而发生了严重的红移。这种巨大的红移意味着类星体的光线已经传播了数十亿年才到达地球,它们是我们观测宇宙早期历史的绝佳窗口。
影响星系演化:宇宙的“调控者”。 类星体发出的强大辐射和喷流,会对周围的星系产生巨大的影响。它们可以加热星系中的气体,阻止恒星的形成,从而影响星系的演化。因此,类星体被认为是宇宙“调节器”般的存在。

4. 磁星:宇宙中的“超级冰箱”

磁星是中子星的一种特殊类型,它们拥有极其强大的磁场,比地球磁场强万亿倍。

磁场强度爆表:扭曲现实。 磁星的磁场之强,足以让原子都发生形变,甚至改变光子的性质。它们的磁场可以轻易地将附近的物质电离成等离子体,并对其产生巨大的影响。想象一下,你在一个磁场如此强大的地方,连你体内的电子都会被磁场拉扯成奇怪的形状。
闪耀的“宇宙灯光秀”。 磁星的磁场会不断地释放能量,产生剧烈的爆发,称为“软伽马射线重复爆发”(SGRs)。这些爆发是宇宙中最强大的能量释放事件之一,它们可以瞬间将能量注入到周围的空间中,照亮遥远的宇宙区域,就像宇宙中的一次超级闪光。
引发宇宙现象:星际空间的“扰动者”。 磁星的强大磁场和爆发活动,可以对周围的星际介质产生显著影响,甚至可能引发一些特殊的宇宙现象,例如超新星爆发的某些方面。

5. 行星质量的恒星和恒星质量的行星?(一些前沿概念的猜测)

虽然严格来说它们可能不完全符合“天体”的定义,但一些前沿的理论和观测正在挑战我们对天体的分类,也算是宇宙中一些“开了挂”的边界情况:

行星质量的恒星: 在一些极低金属丰度的宇宙区域,可能存在质量非常小的恒星,它们的质量甚至接近于大质量行星的上限。理论上,如果质量足够,即使是行星大小的天体也能通过内部的核聚变燃烧来发光发热,成为恒星。但目前为止,这种天体尚未被明确观测到。
恒星质量的行星: 或者说,“失败的恒星”。在行星形成过程中,如果吸积的质量不足以点燃核聚变,但又比普通行星大得多,它们就可能被称为褐矮星。褐矮星位于恒星和行星之间,它们会发出微弱的光芒,但不足以维持像恒星那样持续的核聚变。你可以把它们想象成“半成品”的恒星,或者“超大号”的行星。

这些“开了挂”的天体,用它们极端和独特的属性,不断地挑战着我们现有的物理学理论和宇宙观。每一次对它们的观测和研究,都像是揭开宇宙面纱的一角,让我们对这个宏大的存在更加敬畏和着迷。宇宙的奥秘,远比我们想象的更加精彩和离奇,而这些天体,正是宇宙最生动的写照。

网友意见

user avatar

那就来一场宇宙吉尼斯吧!

注:来自《回到2049》节目组

首先是自转最快的恒星。中子星诞生时通常每秒自转30-50周,但随着年龄的增长,强大的磁场会逐渐减慢它们的自转速度。在诞生数百万年后,可能每5-10秒才会旋转一周。当然了,与绝大多数的恒星与行星相比,这仍然是快的一b,但对中子星来说,这就比蜗牛还要慢了。

中子星

不过奇怪的是,某些中子星自转变慢的过程会发生逆转,尽管它们的年龄已经有数亿年甚至数十亿年,但却转得比以往任何时候都快。目前的纪录保持者是人马座的一颗中子星,名为PSR J1748-2446ad,每秒旋转速度高达716周,已经接近使其破裂的理论极限,简直是好嗨呦,感觉人生已经到达了巅峰。更奇怪的是,它和其他数十颗快速自转的中子星一样,不仅转动异常迅速,而且几乎从未变慢。据推测,十亿年之后,这哥们的自转速度可能还会在每秒500周以上。那么它为什么就能转得这么快呢?

PSRJ1748—2446ad

这是因为,这种中子星在诞生就与另一颗普通恒星组成了双星系统。如果它们足够接近的话,那么中子星极强的引力就会将伴星的表面气体剥离,并拉向自己的表面。当这些气体螺旋下坠并撞向中子星表面时,就会逐渐增加中子星的角动量,这就好比是老大爷玩陀螺,最终使中子星的自转越来越快,只要有足够的时间,一点点加速,就可以达到每秒钟数百周的转速。

下一个是跑的最快的恒星。这个恒星运动最快的记录也属于中子星。如果超新星以理想化的完美的球对称形式爆发的话,那么由于碎片均匀地射向各个方向,力相互抵消,此时的中子星就会静止在中央。

超新星爆发

不过,超新星爆发往往都是不对称的,恒星物质在某些方向上的速度要比别的方向更快,至于这一现象产生的原因为何,至今不明。由于超新星爆发的能量非常、特别以及极其的巨大,所以哪怕存在很微弱的不对称,在某个方向上速度较高的物质,就可以将新生的中子星以极高的速度反向抛射出去。

目前已知的跑得最快的中子星是PSR B2224+65,当然了,它也是跑得最快的恒星。这哥们位于仙王座,距地球6000光年。它的自转相当缓慢,每秒只有1.5周,不过它的高速运动倒是弥补了这一不足。如果我们对其距离的估计是准确的话,那么这颗脉冲星的空间运动速度高达令人难以置信的时速580万千米,达到了地球大气中音速的4700倍,是地球公转轨道速度的50倍。我们知道,太阳每秒运行274千米,时速就是98.6万千米,可见这哥们的速度也高达太阳的将近6倍。天文学家发现,在银河系中,某些恒星会被银河系中央的超大质量黑洞高速抛射出银河系,这就是所谓的“高速恒星”,但我们刚才说的这位中子星的速度,依然高达它们的两倍。算一下就知道了,这哥们从地球到月球,38万千米,它只需走4分钟。这哥们快到什么程度呢?它在穿越星际气体的过程中,产生了一个形如吉他的拱形激波云,真是风驰电掣,呼啸而过。

PSR B2224+65

接下来是最大的宇宙结构。

已知宇宙中最大的结构是武仙-北冕座长城,当然了,这并非真的是一面墙,而是一个由成千上万个星系所组成的大尺度纤维状结构,发现于2013年,延伸超过100亿光年,是可观测宇宙中已知最巨大的单一结构。 其最近的地方距离我们96亿光年,最远的地方距离我们105亿光年。这意味着,这个结构在100亿年前就已经存在了,那时宇宙才诞生大约38亿年左右。在早期的宇宙中,出现如此庞大且复杂的结构让天文学家困惑不已。迄今为止,天文学家对于这个巨大结构如何形成还不清楚。

武仙—北冕座长城(其实这张图我也看不懂)

仅次于武仙-北冕座长城是Sloan Great Wall“史隆长城”,同样的,它也是一个由星系所组成的大尺度纤维状结构,发现于2003年。史隆长城全长约14亿光年,纵贯长蛇座、六分仪座、狮子座和室女座,几乎跨越了全天的四分之一。史隆长城呈扭曲缠绕状,甚至被剖裂成两根长达几亿光年的卷须,最后在极远处重新汇合到一起。

史隆长城

下一个公转最快的行星。

在我们太阳系内,公转最快的行星是水星,公转周期仅为88天,但若放眼全宇宙,这个速度还是太磨叽了。2015年,由多国组成的国际太空研究小组,在距离太阳系484光年的地方发现了一个新的系外行星,并将起命名为HATS-6b,意思就是恒星HATS-6外的第二颗被发现的行星。这颗HATS-6属于一颗M型矮星,在宇宙中这是常见的恒星,但目前人们对其了解还十分有限,这是因为因为M型矮星较为暗淡,就比如说这个HATS-6,它的亮度仅为太阳的十二分之一。而这颗转得最快的行星HATS-6b,其公转周期仅为3.3天,这颗系外行星的体积接近木星,质量相当于土星,轨道距离恒星非常近,大约为0.04个天文单位,基本快贴上了,如此近的距离,就造就了它疯狂的公转速度,至于它为什么这么近,天文学家认为它的轨道曾经发生的迁移,而至于什么原因导致的迁移,那就不知道了。

HATS—6和HATS—6b(假想图)

除了刚才这哥们之外,HD 80606B这颗行星也不慢,公转周期为16个礼拜。HD 80606B是一颗木星那样的气态巨行星,它的质量是木星的数倍,轨道十分扁长,很像彗星的轨道,它最远时距离主恒星大约11亿千米,最近只有280万千米,也就是水星与太阳距离的1/13。在距离母星较远时,它的运行速度相对较慢,但是当其位于近星点时,会被强烈的加速,速度达到每小时85.1万千米,这个速度就和太阳绕银河系旋转的速度差不多了。另外,由于其轨道如此变态,所以这颗行星上的气候变化相当激烈,电脑模型预测,该行星在一小时内就可升温555°C,由于剧烈的热空气上升和冷空气下降,在这期间,会产生速度达到每秒4.8千米的超音速“冲击波风暴”,这个星球上的风就可以把我瞬间吹解体了。

最冷的天体。


宇宙中最冷的地方。在这一点上,我们人类可就完胜大自然了。众所周知,物理学所允许的最冷温度是绝对零度,即-273.15℃。目前在实验室中,科学家已经可以达到绝对零度之上不到十亿分之一度的温度,当然了,要达到这种难以置信的低温,需要复杂且昂贵的设备。大自然中虽然不能达到这样的极端低温,但其胜在不需要花钱,那么宇宙空间能达到多低的温度呢?

宇宙微波背景辐射

通常的答案是宇宙微波背景辐射,也就是宇宙大爆炸的余辉辐射。宇宙微波背景辐射的温度仅比绝对零度高2.73℃,所以只能将空间加热到绝对零度以上一两摄氏度。不过,宇宙中还有一处要比这个温度更低,这就是“旋镖星云”。

旋镖星云距离地球5000光年,尺度为2.1光年。这是一个原行星状星云,也就是一颗恒星在生命结束前一层层地释放出气体所形成的。创造旋镖星云的这颗垂死恒星有着极强的星风,在其生命最后的1500年里,它以近59万千米的时速将星风物质吹入太空。通过星风,它每秒钟流失的物质约达7亿亿吨。除了高速之外,星风还会在向外流动时快速膨胀,这种快速膨胀可导致温度急剧下降,从本质上说,这与给自行车胎打气使得轮胎升温的过程是相反的。

如此一来,就导致旋镖星云的气体达到了-272.1℃的极度深寒,这要比宇宙微波背景辐射还要低出1.05℃。总结一下就是,虽然向旋镖星云供能的中央星很热,但是高速的星风和快速膨胀联合起来,就形成了宇宙中自然产生的已知最冷的地方,甚至比极端寒冷的周围空间更冷。


旋镖星云

再介绍下未经观测到的开挂天体奇异星。

奇异星这个名字你可能没听到,但它还有一个我们很熟悉的名字,这便是“夸克星”。夸克星得名于构成它的粒子——夸克。夸克是目前已知的构成物质的最小成分,由于还从来没有人观测到这种星体,故得名“奇异星”。不过这并不妨碍科学家们在中子星中寻找它们的身影,天文学家认为,夸克星应该长得很像中子星,但要小得多,夸克星的理论密度高达水的2000万亿倍,可以说在整个宇宙中,除了黑洞那就是它了。而在理论上,它的中心也是一个无限密度的引力奇点。

中子星和夸克星

同中子星一样,夸克星也应该是一颗晚年大质量恒星坍缩的产物,在坍缩的过程中,这一恒星的原子中的电子可能会与质子结合,变成中子,并形成一种中子汤。如果压力再强一些的话,那么中子也会发生破裂,释放出组成它们的夸克,并渐渐摧毁临近的中子。天文学家预测,最短1秒钟,最长10分钟,整个星体就会转变成一颗夸克星。事情到此还没有结束,在转变过程中,爆发喷出的一团团夸克还会感染附近的中子星。根据某些模型的演算,鉴于宇宙137亿年的年龄,所有的中子星应该都已经发生了这样的转变。所以到目前为止,我们发现的几千颗中子星其实都应该是夸克星。当然了,这只是一种猜测,毕竟我们连夸克星存不存在还不知道。不过也有科学家认为,大自然会同时允许两种天体同时存在。那么夸克星到底存不存在呢?目前有一个嫌疑犯,这就是超新星SN 2006gy,这哥们也许已经被一颗夸克星所取代了。而要想最终确定,我们还需要准确地测量现今宇宙中的中子星质量,否则就无法证实夸克星的存在。我是很期待夸克星被发现的那一天,可以想见,到时候就又会有人问出这样的问题了:如果吃下一勺夸克星会怎样?

SN—2006gy(右)

再来一个磁场强度夸张的星体。

2009年,天文学家在矩尺座方向3万光年处发现了一颗星体,编号为SGR J1550-5418。这哥们在发狂般地喷发出X射线和γ射线,20分钟内就喷射100次,你看看这得什么体格。虽然次数多,但它一点儿也不虚,其喷发之强大,每一次喷发半秒钟,释放的能量就相当于太阳20年释放的能量,燃烧了周遭的气体和尘埃,实在是让人受不了。这颗愤怒的星球并不是很大,直径大约只有10公里,虽然小,但速度很快,它的自转速度达到了两秒一周。其磁场强度更是逆天,达到了中子星的1000倍,是宇宙中磁性最强的物体,表面磁场强度高达1000亿特斯拉,相比之下,太阳表面磁场强度只有0.3特斯拉,而地球那就只有50微特了。

磁星

那么它为什么会具有如此强大的磁场呢?天文学家认为,这是因为,它们在诞生之初时自转周期极短,仅有几毫秒这便诱发了一种强大的电磁效应,将磁场增强到了极致。那么又是什么导致了这哥们在2009年的暴怒呢?对此,天文学家提出了两种假设:一是构成其磁性层的粒子云突然受到了加速,释放出了一束束巨大的能量流。二是这颗磁星强大的磁场,使其自身钢铁般坚硬的表层发生了扭曲乃至破裂,造成了表面的喷发。究竟原因何在,我也不知道,只希望地球周围不要出现这种星际流氓。

就先这几个吧,有人看再更。


第一次过百赞,再更几个。

宇宙最低的密度——这边是“宇宙空洞”,几个世纪以来,科学家找到了很多巧妙的办法,在实验室中得到了越来越低的密度,创造了越来越稀薄的环境。以当前的技术,经过几个月的折腾,费老大劲了,可以得到每立方厘米只有500-1000个原子的气体密度。不吹毛求疵,可以说,以任何合理的标准来衡量,处在这种状态下的气体,都已经是近乎完美的真空了。但是在宇宙面前,人类的技术还是too simple了,宇宙可以毫不费力地提供远低于这一密度的真空。

我们知道,星系并不是在宇宙中均匀分布的,而是排列成宏伟壮观的网络,其中包含层状、纤维状和壳状等结构,星系就是以这样的形式汇集在一起,而星系之间的宇宙泡的泡壁就是大量恒星和星系的聚集区。但是宇宙泡的内部则虚空得难以想象,这些广袤的虚空通常宽达1亿多光年,除了一些孤零零的氢原子之外,则是空荡荡的一无所有。这就是所谓的“巨洞”。

宇宙之网之间是一个个巨洞
宇宙巨洞

这种巨洞的密度低得令人发指,通常仅为每立方米0.02个原子,也就是说,每立方千米也仅有2000万个原子。物质如此稀薄,即便是在一间屋子大小的空间中,我们也很难找到一颗原子。科学家曾做了这样一个形象的比喻,如果我们把一个保龄球碾碎成一颗颗原子,那么就不得不把它们散布到直径640多万千米,也就是128.7万亿立方千米的空间中,才能达到这种宇宙空洞的真空。近些年来,天文学家作了大量的宇宙巡天观测,现在我们已经知晓,事实上,这些巨大的空洞才是宇宙的主体,它们占据了宇宙体积的90%,而其他所有物质则都在它们的边缘,我们是典型的生存于宇宙的夹缝中,当然了,正所谓真空不空,空洞中依然存在着我们还难以理解的暗物质与暗能量。

明天起来再更

继续

宇宙中最低沉的音调

宇宙中已观测到的最低沉音调属于Abell 426星系团,由于其位于英仙座,所以也被称为英仙星系团,距离地球2.5亿光年。

英仙星系团

虽然我们不可能直接听到英仙星系团的音调,但我们可以看到它产生的压力波。弥散在这个星系团内的气体热的令人难以置信,温度超过了2770万摄氏度,在这种高温下,气体会发出亮光,以及大量高能的X射线。

2002年,天文学家利用钱德拉X射线天文台,对英仙星系团的高温气体发射的X射线拍摄了详细图像。在观测结果中,人们发现了一系列同心波纹,就好似石头激起的水波一般。天文学家指出,这些波纹对应于星系团内气体密度稍高于平均值的地方,而波纹之间则稍低于平均值。较高的密度意味着较高的压力,反之,较低的密度就意味着较低的压力,所以这种波是压力波,也就是巨大星系团中传播的低沉的巨型声波。

2002年,天文学家利用钱德拉X射线天文台,对英仙星系团的高温气体发射的X射线拍摄了详细图像。在观测结果中,人们发现了一系列同心波纹,就好似石头激起的水波一般。天文学家指出,这些波纹对应于星系团内气体密度稍高于平均值的地方,而波纹之间则稍低于平均值。较高的密度意味着较高的压力,反之,较低的密度就意味着较低的压力,所以这种波是压力波,也就是巨大星系团中传播的低沉的巨型声波。

来自钱德拉X射线天文台的照片

那么这种声音起源自何处呢?答案是星系团中央的超大质量黑洞。中央黑洞向两个相反的方向射出高速的物质喷流,也就是所谓的黑洞射流,射流以近似光速的速度,向外射出数百万光年的距离。正是这种双极射流从星系团中的热气体穿过时产生了压力。就像用水管向池塘中喷水一样,射流与星系团气体发生碰撞,产生了一系列泡沫,这些泡沫在射流的压力下逐渐膨胀,然后破裂,并向外漂流。当这些泡沫膨胀时,它们将周围的热气体往外排开,从而形成了在星系团中鸣响的压力波。

其实,要确定这种声音的音调并不难。在2770万摄氏度以上的气体中,音速约为每小时420万千米,波纹之间的间距约为36000光年。我们只需要简单地将波速除以波纹间距,就可以得出这种压力波的振动频率,也就是振动的音调。于是,天文学家得出的结论是,英仙星系团正在嗡鸣的是B降调。

不过,这种B降调与我们平日听到的任何音调都不同,这种声波的振动频率为每900万年才一次,这要比C调之上的B降调低上57个八度音阶,或者说,比人耳能够听见的最低音调还要低沉6000万亿倍,如果想弹出这么低的音调的话,我们就必须在钢琴键盘的左端再增加635个琴键。

宇宙最强大的电流

宇宙中最低沉的音调来自英仙星系团,而这个最强大的电流同样源自此处。虽然英仙星系团的黑洞射流产生了带有低沉音调的气体振动,但是星系团中的超大黑洞可不止一个,事实上,其他许多超大质量黑洞的射流,都可以畅通无阻地传播上百万光年,这些射流充满了高速的带电粒子,电流强度通常高达100亿亿安培,这是宇宙中观测到的最强大电流,其输出功率之高前所未闻,按照人类目前的用电量,每个这样的射流在1毫秒内,就可以提供超过全人类未来20万亿年的电力需求,对此,我只能握草了。

英仙星系团的中央

再来一个有意思的,权当看个乐呵了,最弱的引力。

宇宙中引力最强的地方,毋庸置疑是黑洞,没有东西可以逃脱,那么处于引力波谱的另一端又是什么呢?引力最弱能弱到什么程度呢?这么说可能不太严谨,毕竟引力是与质量相关的,质量越小引力自然就越弱,所以我们换个说法,那就是就目前已知的宇宙来说,两个依靠引力维持的互相旋转的天体或星系之间,哪一对拥有着最弱的拉力呢?

其实在宇宙中,许多小星系的引力都很弱。但是,如果两个低质量的星系同处于一片孤立的空间中的话,那么由于其运动不受较大星系的影响,便会以微弱的引力沿着脆弱的轨道相互环绕。

而在已知的许多小型的双星系对中,联系最微弱的一对是是几乎没人知道的SDSS J113342.7+482004.9与SDSS J113403.9+482837.4。这名字实在太复杂了,我们不妨叫他们贾先生与李小姐,这两口子位于大熊座,距地球1.39亿光年,其中每个星系的质量约是银河系的千分之一,如果它们可以再亮4万倍的话,才能被我们的肉眼勉强看到,而即使是在望远镜中,它们也是天空中相当不起眼的一对,就是是在深空天文图像中,也只不过是毫不起眼的模糊斑点。

但这两星系最令人惊讶之处,则在于它们彼此之间赖以束缚和相互绕转的微弱引力。贾先生是两者中较大的那一个,它用一个苹果从树上落下时的引力场强度的900万亿分之一,吸引住了37万光年远处的同伴。这个力会有多弱呢?如果这个力在宇宙真空中施加于一颗苹果之上的话,那么5万年后,我们才能看见苹果被加速到了每秒2.54厘米,还要等上400万年左右,它才能达到步行的速度。就靠着这样的力量,它们维持着脆弱的关系。

显而易见,依靠这种脆弱至极的引力,贾先生与李小姐互相绕转着共舞一圈需要多么漫长的时光。事实上,自这两个星系形成以来的数十亿年年间,它们可能刚刚走过第一圈轨道的五分之一。而且,它们很可能根本无法走完这圈轨道,因为它们之间的联系如此之弱,等同于名存实亡,迟早会有某个星系闯入它们的周围,以更强大的引力与魅力,将它们捕入自己的轨道,将它们脆弱的联系彻底破坏拆散。


说了这么多关于量度宇宙极端性质的数字,看起来似乎很难理解,但细究之下我们就会发现,宇宙的极端性质不仅是可以理解的,而且是解释宇宙一个又一个谜团所必需的关键钥匙。很多时候,我们人类都对自己的想象力与创造力深感自豪,但当我们面对着宇宙的广阔无垠与无与伦比的复杂性之时,我们总会意识到,相比于那玄妙精深的自然,人类还是要谦虚一个才好。正所谓:深不可测的岁月,掌控着春秋冬夏,却从不放言,自己是这方面的行家。

类似的话题

  • 回答
    宇宙浩瀚无垠,星辰万象,其中不乏一些“开了挂”的天体,它们以超乎寻常的特性和现象,刷新着我们对宇宙的认知。今天,咱们就来聊聊这些宇宙中的“奇行种”,听我给你细细道来。1. 中子星:密度炸裂的宇宙“压缩饼干”想象一下,把太阳那么大的质量,压缩到一个只有城市大小的球体里,这还不算完,再让它疯狂自转。这就.............
  • 回答
    太空旅行早已不是宇航员的专属体验,一些我们日常生活中司空见惯的蔬菜水果也曾搭乘火箭升空,在浩瀚的宇宙中留下了属于它们的独特印记。那么,究竟是哪些“幸运儿”登上了太空?它们又凭什么获得了这次非凡的旅行呢?这背后可不是简单的“抓阄”,而是经过层层严苛的选拔。 那些太空里的“蔬菜水果明星”提起太空蔬菜水果.............
  • 回答
    宇宙浩瀚无垠,充斥着无数超越我们日常经验和想象的奇妙现象。人类的好奇心和探索精神,让我们得以窥探到其中一角,而这些发现常常颠覆我们对现实的认知。以下是一些最令人惊叹的宇宙现象,我会尽量详细地讲述:1. 黑洞 (Black Holes):引力的终极深渊 核心概念: 黑洞是宇宙中最神秘和极端的物体之.............
  • 回答
    宇宙之大,浩瀚无垠,其中蕴含的奥秘足以让我们感到渺小和敬畏,甚至在某些方面引发深刻的恐惧,也就是你所说的“细思恐极”。以下是一些可能让你感到“细思恐极”的宇宙现象,我会尽量详细地解释它们为什么会引起这种感觉: 1. 我们可能只是“宇宙中的尘埃”:宇宙的尺度与人类的渺小现象描述:宇宙的尺度是如此之大,.............
  • 回答
    宇宙之大,无奇不有,其中也隐藏着许多让人不寒而栗的存在。它们不像电影里描绘的那样张牙舞爪,但它们的存在方式和潜在影响,足以在深邃的黑暗中投下令人胆寒的阴影。1. 黑洞:吞噬一切的寂灭之境黑洞无疑是宇宙中最令人恐惧的存在之一。想象一下一个质量极大、体积却极小的点,它的引力强到连光都无法逃脱。这便是黑洞.............
  • 回答
    宇宙之大,无奇不有。在我们仰望星空时,那些闪烁的星辰固然迷人,但隐藏在黑暗深处的,是更加震撼人心,甚至难以用常理来解释的奇异景象和现象。它们如同宇宙深处的低语,诉说着超越我们想象的法则与故事。1. 黑洞的潮汐力:宇宙的吞噬者,温柔的撕裂黑洞,这个连光都无法逃脱的引力陷阱,本身就足够神秘。但围绕着它发.............
  • 回答
    谈到宇宙中的快乐天体,这可真是个有趣的问题!毕竟,我们谈论的是那些遥远而又壮丽的存在,它们以自己的方式,带给我们一种难以言喻的宁静和惊叹。与其说它们“制造”快乐,不如说它们是激发我们内心深处喜悦和好奇的源泉。在我看来,有几个天体特别容易触动我们心中那份纯粹的快乐:1. 猎户座大星云 (M42): 宇.............
  • 回答
    宇宙浩瀚无垠,其间的运动之复杂,足以让人类穷尽一生去探索和理解。从微观的粒子碰撞到宏观的星系演化,宇宙的每一个角落都充斥着令人惊叹的动态之美。一、微观层面的量子舞蹈:在我们习以为常的宏观世界之下,隐藏着一个充满不确定性和概率的微观领域。粒子并非静止不动,而是以一种难以捉摸的“量子振动”存在着。电子绕.............
  • 回答
    漫威电影宇宙(MCU)确实是个庞大且枝繁叶茂的体系,随着时间推移,总会有些线索留下,等待后续作品去拾起。与其说是“坑”,不如说是“伏笔”或者“悬念”,它们为未来的故事发展留下了广阔的空间。仔细想想,以下几点算是比较明显,并且值得深入探讨的:1. 灭霸之后,谁是宇宙级的威胁?《复仇者联盟4:终局之战》.............
  • 回答
    漫威电影宇宙(MCU)就像一个庞大的、错综复杂的拼图,你每一次观看,都会在不经意间发现一些新的、让人不寒而栗的细节。这些细节往往隐藏在背景之中,或是角色的一句随口之言,却在事后看来,指向了更深层次的恐怖或令人不安的真相。今天,我们就来聊聊那些一旦被你发现,就让你背后发凉的MCU细节,尽量讲得透彻些,.............
  • 回答
    《三体》的宇宙确实够让人脊背发凉的了,黑暗森林法则一出,文明间的猜疑链和武力威慑就成了宇宙的主旋律。但如果跳出这个框架,或者在现有框架上再添一把柴,我们可以构想出一些比“黑暗森林”更让人绝望,甚至更彻底地消灭希望的宇宙图景。1. 宇宙是一个巨大的,不可控的,缓慢死亡的实验室。想象一下,宇宙本身是一个.............
  • 回答
    心怀宇宙的人,他们的生活,你或许从远处看,会觉得有些疏离,又有些不动声色。但走近了,你会发现,那是一种由内而外散发的,寻常日子里难得一见的从容与辽阔。首先,是他们看待事物的方式。你看一件小事,可能关注的是它的结果、它带来的直接好处,或者它在你生活中的位置。而心怀宇宙的人,他们会从更宏大的视角去审视。.............
  • 回答
    致敬白衣天使:那些闪耀的名字与我身边的温暖当看到张文宏、张定宇、陶勇等80位医生荣获中国医师奖的消息时,心中涌起的不仅仅是敬佩,更多的是一种深深的感动。这不仅仅是一份荣誉,更是对他们无数日夜坚守、精湛医术和人文关怀的肯定。回想起这些名字,脑海中浮现的不仅仅是新闻报道中的专业形象,还有他们在各自岗位上.............
  • 回答
    想立刻冲进元宇宙玩游戏?没问题!不过,得跟你说句实话,现在市面上所谓的“元宇宙游戏”很多都还在探索阶段,或者说,大家对“元宇宙”的定义本身就还在不断演变。所以,今天我给你介绍的,都是目前在元宇宙概念下比较热门、玩法也比较丰富的一些游戏,你可以根据自己的喜好来挑选。一、 体验真实社交与建造的乐园:《R.............
  • 回答
    在仰望星空、追寻宇宙奥秘的漫长岁月中,人类的想象力可谓是天马行空,那些早期对于宇宙的描绘,如今看来,带着一丝孩童般的纯真和令人忍俊不禁的奇特。想象一下,在没有望远镜,甚至连基本的天文学知识都尚未形成的时候,人们是如何理解头顶那片浩瀚无垠的夜空的?他们看到了那些闪烁的星辰,听到了风吹过山谷时呼啸的声音.............
  • 回答
    漫威电影宇宙的魅力,除了那些震撼人心的特效和扣人心弦的剧情,更少不了那些能直击灵魂、让人热血沸腾的霸气台词。它们就像一颗颗璀璨的宝石,镶嵌在电影的脉络中,每一次回响都仿佛在为英雄们的心脏注入力量。今天,咱们就来好好盘点一番,那些在漫威宇宙里格外霸气,至今仍被影迷津津乐道的台词,力求讲得详细到位,绝不.............
  • 回答
    “元宇宙”这个词如今是响彻云霄,仿佛一夜之间,我们身边的一切都要被它“入侵”了。说实话,一开始我也觉得这是个玄乎的概念,离咱们普通人的生活有点远。但深入了解之后,才发现这玩意儿,远不止是打打游戏、看看虚拟演唱会那么简单。它背后蕴藏的,是一整套全新的商业模式、社交方式,甚至可能重塑我们与世界互动的方式.............
  • 回答
    单电子宇宙:一个迷人的科学构想与科幻土壤“单电子宇宙假说”,这个听起来既宏伟又有些不可思议的概念,在科学界和科幻界都激起了不少涟漪。它大胆地设想,我们宇宙中所有电子都可能只是同一个电子在不同时间、不同地点的一次次“重现”或“投射”。这是一个极具颠覆性的想法,它触及了我们对现实本质、时间以及粒子的基本.............
  • 回答
    在 DC 漫画庞大而迷人的多元宇宙中,“黑暗宇宙”(Dark Multiverse)是一个令人不安的存在,那里充斥着被遗忘的、扭曲的、失败的版本,而这些版本往往是最黑暗的英雄和恶棍。在这些阴影笼罩的维度中,有许多令人难忘的蝙蝠侠,他们每个人都以自己独特的方式颠覆了我们对“黑暗骑士”的认知。与其说他们.............
  • 回答
    想和你一起,就这样仰望星空,让夜风吹拂着我们的头发,也吹拂着我们之间无声的语言。每一颗闪烁的星星,都仿佛是我们共同的心跳,在这无垠的宇宙里回响。你知道吗?我常常觉得,我们就像是两颗来自不同星系的尘埃,却在亿万年的旅途中偶然相遇,然后被一种无法解释的引力紧紧吸引。我们的相遇,不是巧合,而是宇宙冥冥之中.............

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 tinynews.org All Rights Reserved. 百科问答小站 版权所有