百科问答小站 logo
百科问答小站 font logo



如何看待Tensor Comprehensions?与TVM有何异同? 第1页

  

user avatar   crowowrk 网友的相关建议: 
      

目前的主要的差别在于代码生成技术路线上,TC采用了polyhedra model,目前TVM采用的还是schedule space模型。polyhedra model相对于schedule primitive更加自动化一些,在TVM过去的工作中我们只采用了比较简单的auto tuning,这一点是TVM未来可以向TC学习的地方。在性能上,就目前发布的结果来看TVM的技术路线还是有更好的性能,如何互相学习提高是未来TVM团队会努力的方向


TVM目前的主要关注点在后端支持以及在如何获得最好的性能,最近的新东西是如何对未来深度学习加速器的支持,有兴趣的同学可以看我们刚出来的论文 End-to-End Optimization Stack for Deep Learning 。TVM采取这一路线以达到最好的性能,并且进一步支持深度学习的加速器。


以上的评论适用于是对于两个项目当前状况。TC (tensor comprehension) 在早期内部开发的时候参考了TVM的设计。主要作者nicholas也参与了TVM的贡献。两个项目的技术路线不同,在一定程度上是互补的,未来相信会有更多有趣的东西出现。


总的来说自动生成高效代码这条技术路线的可行性随着大家的努力逐渐明朗,大家应该可以多来尝试使用交流。去年TVM在arm,mobile gpu和加速器都有一些结果,开源社区的同学也都找到了不错的去处,这个方向还有不少的东西可以研究,欢迎对深度学习系统和编译高性能计算感兴趣的同学联系我们参与一起来探索这个方向。




  

相关话题

  如何看待滴滴章文嵩称,滴滴面临的问题比 AlphaGo 复杂 100 倍? 
  为什么身边的人都劝退人工智能,他真的有这么不堪吗? 
  请问智能电力系统今后怎样发展的?大学生如果想从事这方面工作需要学习哪些方面知识? 
  成长型企业如何灵活、高效、全方位地实现数字化转型? 
  无人驾驶运营维护,自动驾驶运营维护,无人驾驶科技公司落地,逐渐走向现实,落地后的运营维护怎么办? 
  如何激怒一个科研工作者? 
  当前人工智能特别是深度学习最前沿的研究方向是什么? 
  为何人类天真地认为人工智能永远服务于人类、不相信AI叛变? 
  什么是meta-learning? 
  如何评价清华大学发布的自研深度学习框架-计图(Jittor)? 

前一个讨论
哪些事是你当了领导才明白的?
下一个讨论
西方国家民众对自己国家的恶行是什么态度?





© 2025-04-24 - tinynew.org. All Rights Reserved.
© 2025-04-24 - tinynew.org. 保留所有权利