质胜文则野,文胜质则史,文质彬彬,然后君子。
泻药。
GCN 升温的这两年里,动作识别领域出了不少好文章。这也不奇怪,毕竟动作识别以前就有 Graph 的相关应用,套用一下 GCN 总是会有提升的。不过,一年过去了,超过 Spatial Temporal Graph Convolution Networks for Skeleton Based Action Recognition 的工作仍然寥寥可数。我等屁民还是挺佩服的~
还在这个领域耕耘的同学们也不用灰心丧气,ST-GCN 作为一篇开山作(或者说占坑文),很多地方都从简了。要想提升不太困难~ 用大粗话来说,作者的主要工作就两点:
但是,这篇文章在工程和学术上都做到了文质彬彬:
很多同学比较关心 st-gcn 到底做了什么,这里用个简单的思路说说我的理解。
OpenPose 是一个标注人体的关节(颈部,肩膀,肘部等),连接成骨骼,进而估计人体姿态的算法。作为视频的预处理工具,我们只需要关注 OpenPose 的输出就可以了。
总的来说,视频的骨骼标注结果维数比较高。在一个视频中,可能有很多帧(Frame)。每个帧中,可能存在很多人(Man)。每个人又有很多关节(Joint)。每一个关节又有不同特征(位置、置信度)。
对于一个 batch 的视频,我们可以用一个 5 维矩阵 表示。
想要搞 End2End 的同学还是要稍微关注一下 OpenPose 的实现的。最近还有基于 heatmap 的工作,效果也不错~
论文中给出的模型描述很丰满,要是只看骨架,网络结构如下:
主要分为三部分:
首先,对输入矩阵进行归一化,具体实现如下:
N, C, T, V, M = x.size() # 进行维度交换后记得调用 contiguous 再调用 view 保持显存连续 x = x.permute(0, 4, 3, 1, 2).contiguous() x = x.view(N * M, V * C, T) x = self.data_bn(x) x = x.view(N, M, V, C, T) x = x.permute(0, 1, 3, 4, 2).contiguous() x = x.view(N * M, C, T, V)
归一化是在时间和空间维度下进行的( )。也就是将一个关节在不同帧下的位置特征(x 和 y 和 acc)进行归一化。
这个操作是利远大于弊的:
接着,通过 ST-GCN 单元,交替的使用 GCN 和 TCN,对时间和空间维度进行变换:
# N*M(256*2)/C(3)/T(150)/V(18) Input:[512, 3, 150, 18] ST-GCN-1:[512, 64, 150, 18] ST-GCN-2:[512, 64, 150, 18] ST-GCN-3:[512, 64, 150, 18] ST-GCN-4:[512, 64, 150, 18] ST-GCN-5:[512, 128, 75, 18] ST-GCN-6:[512, 128, 75, 18] ST-GCN-7:[512, 128, 75, 18] ST-GCN-8:[512, 256, 38, 18] ST-GCN-9:[512, 256, 38, 18]
空间维度是关节的特征(开始为 3),时间的维度是关键帧数(开始为 150)。在经过所有 ST-GCN 单元的时空卷积后,关节的特征维度增加到 256,关键帧维度降低到 38。
个人感觉这样设计是因为,人的动作阶段并不多,但是每个阶段内的动作比较复杂。比如,一个挥高尔夫球杆的动作可能只需要分解为 5 步,但是每一步的手部、腰部和脚部动作要求却比较多。
最后,使用平均池化、全连接层(或者叫 FCN)对特征进行分类,具体实现如下:
# self.fcn = nn.Conv2d(256, num_class, kernel_size=1) # global pooling x = F.avg_pool2d(x, x.size()[2:]) x = x.view(N, M, -1, 1, 1).mean(dim=1) # prediction x = self.fcn(x) x = x.view(x.size(0), -1)
Graph 上的平均池化可以理解为对 Graph 进行 read out,即汇总节点特征表示整个 graph 特征的过程。这里的 read out 就是汇总关节特征表示动作特征的过程了。通常我们会使用基于统计的方法,例如对节点求 等等。mean 鲁棒性比较好,所以这里使用了 mean。
插句题外话,这里的 卷积和全连接层等效,最近在用 matconvnet 的时候,发现它甚至不提供全连接层,只使用 的卷积。
从结果上看,最简单的图卷积似乎已经能取得很好的效果了,具体实现如下:
def normalize_digraph(A): Dl = np.sum(A, 0) num_node = A.shape[0] Dn = np.zeros((num_node, num_node)) for i in range(num_node): if Dl[i] > 0: Dn[i, i] = Dl[i]**(-1) AD = np.dot(A, Dn) return AD
作者在实际项目中使用的图卷积公式就是:
公式可以进行如下化简:
其实就是以边为权值对节点特征求加权平均。其中, 可以理解为卷积核。如果不了解图卷积可以看这里。
考虑到动作识别的特点,作者并未使用单一的卷积核,而是使用『图划分』,将 分解成了 。(作者其实提出了几种不同的图划分策略,但是只有这个比较好用)
表示的所有边如上图右侧所示:
作者结合运动分析研究,将其划分为三个子图,分别表达向心运动、离心运动和静止的动作特征。
对于一个根节点,与它相连的边可以分为 3 部分。
使用这样的分解方法,1 个图分解成了 3 个子图。卷积核也从 1 个变为了 3 个,即 变为 。3 个卷积核的卷积结果分别表达了不同尺度的动作特征。要得到卷积的结果,只需要使用每个卷积核分别进行卷积,在进行加权平均(和图像卷积相同)。
具体实现如下:
A = [] for hop in valid_hop: a_root = np.zeros((self.num_node, self.num_node)) a_close = np.zeros((self.num_node, self.num_node)) a_further = np.zeros((self.num_node, self.num_node)) for i in range(self.num_node): for j in range(self.num_node): if self.hop_dis[j, i] == hop: if self.hop_dis[j, self.center] == self.hop_dis[ i, self.center]: a_root[j, i] = normalize_adjacency[j, i] elif self.hop_dis[j, self. center] > self.hop_dis[i, self. center]: a_close[j, i] = normalize_adjacency[j, i] else: a_further[j, i] = normalize_adjacency[j, i] if hop == 0: A.append(a_root) else: A.append(a_root + a_close) A.append(a_further) A = np.stack(A) self.A = A
现在,我们可以写出带有 个卷积核的图卷积表达式了:
表达式可以用爱因斯坦求和约定表示 。其中,
对 求和代表了节点的加权平均,对 求和代表了不同卷积核 feature map 的加权平均,具体实现如下:
# self.conv = nn.Conv2d( # in_channels, # out_channels * kernel_size, # kernel_size=(t_kernel_size, 1), # padding=(t_padding, 0), # stride=(t_stride, 1), # dilation=(t_dilation, 1), # bias=bias) x = self.conv(x) n, kc, t, v = x.size() x = x.view(n, self.kernel_size, kc//self.kernel_size, t, v) x = torch.einsum('nkctv,kvw->nctw', (x, A)) return x.contiguous(), A
如果要类比的话,其实和 GoogleNet 的思路有些相似:
都在一个卷积单元中试图利用不同感受野的卷积核,提取不同分量的特征。
GCN 帮助我们学习了到空间中相邻关节的局部特征。在此基础上,我们需要学习时间中关节变化的局部特征。如何为 Graph 叠加时序特征,是图网络面临的问题之一。这方面的研究主要有两个思路:时间卷积(TCN)和序列模型(LSTM)。
ST-GCN 使用的是 TCN,由于形状固定,我们可以使用传统的卷积层完成时间卷积操作。为了便于理解,可以类比图像的卷积操作。st-gcn 的 feature map 最后三个维度的形状为 ,与图像 feature map 的形状 相对应。
在图像卷积中,卷积核的大小为『w』 『1』,则每次完成 w 行像素,1 列像素的卷积。『stride』为 s,则每次移动 s 像素,完成 1 行后进行下 1 行像素的卷积。
在时间卷积中,卷积核的大小为『temporal_kernel_size』 『1』,则每次完成 1 个节点,temporal_kernel_size 个关键帧的卷积。『stride』为 1,则每次移动 1 帧,完成 1 个节点后进行下 1 个节点的卷积。
具体实现如下:
padding = ((kernel_size[0] - 1) // 2, 0) self.tcn = nn.Sequential( nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d( out_channels, out_channels, (temporal_kernel_size, 1), (1, 1), padding, ), nn.BatchNorm2d(out_channels), nn.Dropout(dropout, inplace=True), )
再列举几个序列模型的相关工作,感兴趣的同学可以尝试一下:
Attention
作者在进行图卷积之前,还设计了一个简易的注意力模型(ATT)。如果不了解图注意力模型可以看这里。
# 注意力参数 # 每个 st-gcn 单元都有自己的权重参数用于训练 self.edge_importance = nn.ParameterList([ nn.Parameter(torch.ones(self.A.size())) for i in self.st_gcn_networks ]) # st-gcn 卷积 for gcn, importance in zip(self.st_gcn_networks, self.edge_importance): print(x.shape) # 关注重要的边信息 x, _ = gcn(x, self.A * importance)
其实很好理解,在运动过程中,不同的躯干重要性是不同的。例如腿的动作可能比脖子重要,通过腿部我们甚至能判断出跑步、走路和跳跃,但是脖子的动作中可能并不包含多少有效信息。
因此,ST-GCN 对不同躯干进行了加权(每个 st-gcn 单元都有自己的权重参数用于训练)。
上面的内容主要是在讲『文质彬彬』中的『质』,其实我感觉『文』才是比较难的部分。在写论文的过程中,找到一个好的视角,流畅地表达出模型的可解释性是非常可贵的。
研一这一年,导师都在教我如何讲好一个故事,与君共勉吧~