百科问答小站 logo
百科问答小站 font logo



既然使用神经网络也可以解决分类问题,那SVM、决策树这些算法还有什么意义呢? 第1页

  

user avatar   insulator 网友的相关建议: 
      

谢邀,赞同 @mileistone 的回答,没有一个模型是万能的,需要根据数据选择适合的模型。

在机器学习中,数据大概可以分成四大类:图像 (Image),序列(Sequence),图(Graph) 和表格(Tabular) 数据。其中,前3类数据有比较明显的模式,比如图像和图的空间局部性,序列的上下文关系和时序依赖等。而表格数据常见于各种工业界的任务,如广告点击率预测,推荐系统等。在表格数据中,每个特征表示一个属性,如性别,价格等等,特征之间一般没有明显且通用的模式。

神经网络适合的是前三类数据,也就是有明显模式的数据。因为我们可以根据数据的模式,设计对应的网络结构,从而高效地自动抽取“高级”的特征表达。如常见的 CNN (卷积神经网络) 就是针对图像而设计的,RNN (循环神经网络) 是为序列数据而设计的。而表格数据,因没有明显的模式,非要用神经网络的话,就只能用低效的全连接网络,一般效果都不太好。在实践中,对于表格数据,除了专门对特定任务设计的网络结构如DeepFM等,更多时候还是用传统机器学习模型。尤其是 GBDT (梯度提升树),因其自动的特征选择能力及动态的模型复杂度,算得上是一个万金油模型,在各种类型的表格数据上都表现很好。但对于表格数据而言,其实特征工程才是更关键的。在给定数据的情况下,模型决定了下限,特征决定了上限。特征工程类似于神经网络的结构设计,目的是把先验知识融入数据,并且让模型更好地理解数据,让模型可以学得更好。

另外,神经网络实质上不算是一个模型,而是一类可以自由“搭积木”的模型。结构不同的神经网络可以认为是不同的模型了。

总结下,no free lunch,没有一个万能的模型,可以直接用于各种数据。有多少人工就有多少智能:用神经网络的话,你需要结构设计;而用传统模型的话,你需要特征工程。


user avatar   lwl1127 网友的相关建议: 
      

女王:求求题主放过我,我可不敢有什么政绩。。。


user avatar   mileistone 网友的相关建议: 
      

女王:求求题主放过我,我可不敢有什么政绩。。。




  

相关话题

  为什么自动控制理论这么玄学? 
  有哪些贝叶斯推理入门的书籍? 
  word2vec 相比之前的 Word Embedding 方法好在什么地方? 
  加州大学伯克利分校为何能连续孵化出 Mesos,Spark,Alluxio,Ray 等重量级开源项目? 
  人工智能技术会不会最终赶上微积分的历史地位? 
  如何正确地用 Test Driven Development 实现算法? 
  想问下专业人士 OpenCv会被深度学习进一步取代吗进一步取代吗? 
  有监督和无监督学习都各有哪些有名的算法和深度学习? 
  如何直观地解释 backpropagation 算法? 
  CVPR 2019 有哪些值得关注的亮点? 

前一个讨论
怎么写文献综述?
下一个讨论
如何评价MSRA视觉组最新对spatial attention mechanism分析论文?





© 2025-06-03 - tinynew.org. All Rights Reserved.
© 2025-06-03 - tinynew.org. 保留所有权利