百科问答小站 logo
百科问答小站 font logo



使用pytorch时,训练集数据太多达到上千万张,Dataloader加载很慢怎么办? 第1页

  

user avatar   fang-niu-wa-28-17 网友的相关建议: 
      

下面是我见到过的写得最优雅的,预加载的dataloader迭代方式可以参考下:

使用方法就和普通dataloder一样 for xxx in trainloader .

主要思想就两点 , 第一重载 _iter 和 next_ ,第二点多线程异步Queue加载

       import numbers import os import queue as Queue import threading  import mxnet as mx import numpy as np import torch from torch.utils.data import DataLoader, Dataset from torchvision import transforms   class BackgroundGenerator(threading.Thread):     def __init__(self, generator, local_rank, max_prefetch=6):         super(BackgroundGenerator, self).__init__()         self.queue = Queue.Queue(max_prefetch)         self.generator = generator         self.local_rank = local_rank         self.daemon = True         self.start()      def run(self):         torch.cuda.set_device(self.local_rank)         for item in self.generator:             self.queue.put(item)         self.queue.put(None)      def next(self):         next_item = self.queue.get()         if next_item is None:             raise StopIteration         return next_item      def __next__(self):         return self.next()      def __iter__(self):         return self   class DataLoaderX(DataLoader):     def __init__(self, local_rank, **kwargs):         super(DataLoaderX, self).__init__(**kwargs)         self.stream = torch.cuda.Stream(local_rank)         self.local_rank = local_rank      def __iter__(self):         self.iter = super(DataLoaderX, self).__iter__()         self.iter = BackgroundGenerator(self.iter, self.local_rank)         self.preload()         return self      def preload(self):         self.batch = next(self.iter, None)         if self.batch is None:             return None         with torch.cuda.stream(self.stream):             for k in range(len(self.batch)):                 self.batch[k] = self.batch[k].to(device=self.local_rank,                                                  non_blocking=True)      def __next__(self):         torch.cuda.current_stream().wait_stream(self.stream)         batch = self.batch         if batch is None:             raise StopIteration         self.preload()         return batch   class MXFaceDataset(Dataset):     def __init__(self, root_dir, local_rank):         super(MXFaceDataset, self).__init__()         self.transform = transforms.Compose(             [transforms.ToPILImage(),              transforms.RandomHorizontalFlip(),              transforms.ToTensor(),              transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),              ])         self.root_dir = root_dir         self.local_rank = local_rank         path_imgrec = os.path.join(root_dir, 'train.rec')         path_imgidx = os.path.join(root_dir, 'train.idx')         self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')         s = self.imgrec.read_idx(0)         header, _ = mx.recordio.unpack(s)         if header.flag > 0:             self.header0 = (int(header.label[0]), int(header.label[1]))             self.imgidx = np.array(range(1, int(header.label[0])))         else:             self.imgidx = np.array(list(self.imgrec.keys))      def __getitem__(self, index):         idx = self.imgidx[index]         s = self.imgrec.read_idx(idx)         header, img = mx.recordio.unpack(s)         label = header.label         if not isinstance(label, numbers.Number):             label = label[0]         label = torch.tensor(label, dtype=torch.long)         sample = mx.image.imdecode(img).asnumpy()         if self.transform is not None:             sample = self.transform(sample)         return sample, label      def __len__(self):         return len(self.imgidx)     




  

相关话题

  如何评价通信工程很多导师都研究机器学习人工智能而不是传统的天线电磁场等方向? 
  如何看待西安电子科技大学偷偷给贫困生打钱,大数据精准帮助贫困生是否值得推广? 
  相比于时下流行的机器学习方法(联接主义),传统的人工智能方法(符号主义)有什么独一无二的优势? 
  使用pytorch时,训练集数据太多达到上千万张,Dataloader加载很慢怎么办? 
  为什么机器学习解决网络安全问题总是失败? 
  因果推断会是下一个AI热潮吗? 
  反馈控制理论在优化、机器学习等领域有哪些应用? 
  可以对只有一个像素的图片拥有版权或著作权吗?为什么? 
  机器学习如何才能避免「只是调参数」? 
  如何评价微软亚研院提出的把 Transformer 提升到了 1000 层的 DeepNet? 

前一个讨论
如何看待上海市科委、中科院上海有机所和观视频联合制作的科普微电影《无处不在的手性之有机师姐》?
下一个讨论
表哥说机械比计算机经管都好,如何看待他的言论?





© 2024-12-26 - tinynew.org. All Rights Reserved.
© 2024-12-26 - tinynew.org. 保留所有权利