百科问答小站 logo
百科问答小站 font logo



台积电表示到 2025 年将拥有 2 纳米技术芯片,背后底气何在? 第1页

  

user avatar   Wingo.Wang 网友的相关建议: 
      
To maintain and strengthen TSMC’s technology leadership, the Company plans to continue investing heavily in R&D. For advanced CMOS logic, the Company’s 3nm and 2nm CMOS nodes continue to progress in the pipeline. In addition, the Company’s reinforced exploratory R&D work is focused on beyond-2nm node and on areas such as 3D transistors, new memory and low-R interconnect, which are on track to establish a solid foundation to feed into technology platforms.[1]

以上一段是摘自台积电官网的未来研发计划,从这段描述中可以看出,台积电剑指2nm,甚至更先进的工艺。在逼近物理极限的情况下,新工艺研发的难度以及人力和资金的投入,也是呈指数级攀升。在如此艰难的背景下,台积电的底气何在?我认为有如下三点:

当前的先进工艺节点只是商业代号,而非Gate Length或Half-Pitch

如果有人问芯片工艺的中的7nm、5nm指什么?那么我相信很多人都能给出答案--晶体管导电沟道的长度或者栅极宽度,并且很多人也知道,当前的7nm、5nm只是等效工艺节点,而非真正的沟长或者栅宽。

如果进一步问一下这个问题,当前5nm工艺真正的导电沟长或者栅宽是多少呢?恐怕很多人回答不出来了。不卖关子了,IEEE给出的半导体工艺road map数据是比较可信的,从下图中我们可以看到不同时间对应的工艺节点,而这表里对当前工艺节点的英文描述则非常有意思,它没有用“technology nodes”而是用Logic industry "Node Range" Labeling。

一个Labeling可以说准确的表达了工艺命名的现状。

所以从上表中,我们可以看到,5nm工艺节点的Gate Lenght为18nm、3nm为16nm、2.1nm为14nm、1.5nm/1.0nm/0.7nm则均为12nm。在十几纳米的尺度短沟道效应可以用多种手段来克服,而量子隧穿效应并不明显,所以说,台积电说自己在2030年将拥有1nm Labeling的芯片,我也完全相信。

事实上,从集成电路发明以来,工艺节点的定义也在不断发生变化,从最初的Gate Length到现在,几乎抛弃了各种真实参数Gate Length/Half Pitch/Fin Pitch等。虽然当前的工艺命名背离了真实的工艺,但对于台积电、三星等商业公司来说,显然从工艺命名上获得了巨大的商业上的利益和成功。

此为底气一。

雄厚的资金及资源加持

半导体产业链各个环节是非常紧密的,而现阶段全球的半导体巨头也组成了一个巨大的利益共同体。

台积电拥有最先进的EUV光刻机

工欲善其事必先利其器,光刻机作为半导体制造中最重要的设备,拥有与否则决定了一家Fab的工艺上限。

一台最先进的EUV光刻机价值近10亿,而研发EUV光刻机的投入更是天文数字。除了ASML,制造光刻机还有两家公司--尼康和佳能,但这两家都因为投入太高而放弃研发。

EUV光线的能量、破坏性极高,制程的所有零件、材料,样样挑战人类工艺的极限。例如,因为空气分子会干扰EUV光线,生产过程得在真空环境。而且,机械的动作得精确到误差仅以皮秒(兆分之一秒)计。「如果我们交不出EUV的话,摩尔定律就会从此停止,」ASML总裁暨执行长温彼得(Peter Wennink)说。因此,五年前,才会出现让ASML声名大噪的惊天交易--英特尔、台积电、三星等彼此竞争的三大巨头,竟联袂投资ASML41亿、8.38亿、5.03亿欧元。[2]

反过来,台积电也从ASML可以订购到EUV光刻机,进行新工艺的研发和产能的扩充。

台积电拥有最有钱的客户

但说到TSMC每一代最先的工艺,总少不了一位特殊的客户,那就是苹果。

5nm,3nm甚至是2nm技术都是由苹果和台积电在共同研发,因此苹果在台积电先进工艺的产能拥有牢不可破的地位,将会独占业界最先进的工艺一段时间,吃尽制程红利。同时苹果也是台积电最大的客户,去年为台积电贡献了782.8 亿人民币的营收。

此为底气二。

2025年?三星也可以!

在今年10月份的三星代工论坛2021大会上,三星披露了最新的工艺进展和路线图。三星代工市场策略高级副总裁MoonSoo Kang透露,2GAP工艺会在2025年量产。随着FinFet晶体管结构潜力被挖掘殆尽,未来3nm和2nm将采用GAA晶体管以及2.5D/3D堆叠技术,以实现更好的沟道控制的同时降低功耗。

新技术则为三星台积电的底气三。

为什么要追求先进工艺?

制程工艺的提升,可以带来更高的晶体管密度、更强的性能以及更低的功耗。

我们再回归到工艺制程的原始定义,即芯片7nm,5nm工艺中的7nm,指的是晶体管导电沟道的长度,通常也认为是晶体管的栅极宽度。

那么这个Gate的宽窄为什么会影响性能和功耗呢?先说性能,性能好意味着在一定的时间干更多的事,在处理器里就是更多的运算,我们可以当半导体晶体管每次0/1变化就算一次运算,那么那个红色Gate越宽,两个绿色电极就越远,导致他们直接连通一次的时间就会越长。这就好比一个人在10分钟里做25m往返跑的次数肯定比50m往返跑的次数多一样。所以Gate越小,晶体管一次状态变化的所需时间就会越短,单位时间的工作次数就会越多,一堆晶体管单位时间可做的运算自然就更多,所以性能更好。

再说说功耗。Gate是通过加电压帮助两个绿色电极通电的,而Gate越宽,就需要更高的电压才能导通两极,Gate越窄,导通就更容易,所需的电压也就越低。

而做芯片则是性能,功耗,面积和成本的平衡艺术。如果制程工艺的提升能让芯片在这几方面都更进一步,那么在工艺上投入大量的研发资则是可以理解的。

所以综合以上几个原因,台积电作为半导体制造环节的巨头,2025年量产2nm是有底气的。在摩尔定律放缓的今天,More Moore、More than Moore、Beyond CMOS等新概念层出不穷,为摩尔定律续命。在未来十年,半导体工艺制程依然有相当大的提升空间,所以关于半导体是夕阳产业的论调可以休矣!

参考

  1. ^台积电未来研发计划 https://www.tsmc.com/schinese/dedicatedFoundry/technology/future_rd
  2. ^ http://www.cw.com.tw/article/article.action?id=5068998

user avatar   cheng-gong-bu-shi-kao-zui-pao-de-32 网友的相关建议: 
      

很多人都忘记了,TSMC 将EUV光源250W 突破到了350W这件事了,意味着什么 ? 各位可以去看看有什么帮助...

高光源通过掩模版,再透过一系列镜片排列组成的物镜补偿光学误差,最终精确无误的投射在曝光台上的晶圆表面,精度需要达到纳米级别...

高光源可以提高距离,聚焦就更小,聚焦要小光源就要强....350W 这还不是ASML的专利,是TSMC自行攻破的


这就是TSMC底气...只有TSMC所拥有.....

ASML标准机就是250W....要做到更小就做不了....


台积电3nm工艺进度超前 EUV工艺获突破:直奔1nm (baidu.com)

刘德音提到,台积电已经EUV光源技术获得突破,功率可达350W,不仅能支持5nm工艺,甚至未来可以用于1nm工艺...


user avatar   eidosper 网友的相关建议: 
      

这次舆论的重点在于警察到底是多久赶到的。

没拜码头,收保护费,打砸门面这种原因我们都知道,也不怕;

但是公权力私用或者黑白勾结这种事,就会让人非常害怕;

如果西安公权力真的黑白勾结,还睁眼说瞎话,那就需要处理整顿了。

我朝的治安也不是一直这么好的,人民也不是软弱无比的,60年代西安打的也很凶的。难不成西安各公司以后都要雇佣保安公司保护经营?

这次出警距离1公里,走路10分钟都到了,所以就坐等这次真实的出警时间是多少了。





  

相关话题

  如何看待媒体报道继武汉弘芯后,目标总投资598亿的济南泉芯半导体烂尾? 
  美国为什么不把台积电这样的企业建在日本? 
  小米如果把研发 MIX Alpha 的 5 亿经费投到澎湃芯片里去,能流片多少次? 
  如何看待消息称张汝京创办的芯恩 (CIDM)8 寸芯片厂正式投片成功? 
  现在主存的速度已经超过CPU的速度,那么CPU片内的cache是否可以取消? 
  Alpha处理器到底有多先进? 
  如何看待Keras正式从TensorFlow中分离? 
  为什么手机核心数目提升的比计算机快? 
  为什么玉兔号内存只有 256MB? 
  如果三星收购amd会如何? 

前一个讨论
从《流星蝴蝶剑》到《永劫无间》,为什么武侠动作游戏总能大受追捧?
下一个讨论
如何看待2022年秋招Java后端开发岗一片红海?





© 2024-12-22 - tinynew.org. All Rights Reserved.
© 2024-12-22 - tinynew.org. 保留所有权利