(物理大战数学乱入ing:一大波来自所谓《量纲分析》的学科内容正在靠近……)
简单地说,一个有意义的“物理规则”若用一个关于某些物理量的方程表示,则应不依赖其计量单位之选择(比如最简单的牛二,力关于加速度成正比,这个比例关系就不依赖于作为比例系数的质量单位是用“千克”还是用“克”。它既不会因为你将质量单位取为“毫克”就与加速度的二次方成比例,也不会因为加速度用“千米每毫秒二次方”就变成了关于质量的双曲余切函数),而满足这种条件的数学形式 必然 是各相关物理量的齐次函数(论证在本答最下方),即:
定义(齐次函数):令 为一个域,向量空间 到向量空间 上的一个 次齐次函数 定义为满足条件: 的映射。
【背景:选择这一数学定义的物理动机在于——计量单位的转换,实际上相当于乘一个系数(所谓换算,多数都是做这件事)。换言之,就是同量纲的单位间互成比例。数学上,这等价于缩放变换 。】
而齐次函数里最典型的例子就是关于诸元的单项式(先自己跟自己乘几次,再跟别的乘一起)、齐次多项式(齐次单项式们赶快乘好!各就各位~预备——加)和齐次有理函数(齐次多项式们,谁在上谁在下商量好,商量好了除一发),大部分常见的物理方程式无外乎此。
【思考题:既然如此,为啥斯涅尔定律(Snell's law)里面居然有正弦(正弦显然不是齐次的)?果真没有打脸吗?】
(2017.9.22更)
我这个人很不喜欢对别人的答案指手画脚品头论足,但今天实在看不下去,不得不正式评论一下那些“乘法本质上就是加法”的答案。
对于这样的回答,我只想问一个特别简单的问题——在你们的世界里,有没有一个叫做“超越数 ” 的物种存在?
两个超越数相乘,我才疏学浅,您要不让我长长见识——给我“加出”它们的乘积?
加不出来不要紧,但也请您注意——
【OS:本来我以为是我幽默感欠缺,没意识到这样回答的答主们是恶作剧,谁知道几天没看这样的答案竟然出来这么多??不禁让我怀疑给出这种答案的数学水平莫非还停留在小学初中有理数运算那会儿吗?拜托,要真这样就别强答了好嘛……】
(2018.1.9更)以下补充“在缩放变换下不变的函数是齐次函数”的数学论证。
在量纲分析的理论中,物理规律被视为一物理量关于另一系列物理量的函数关系。为简明起见,首先仅从一元函数的情形开始——设某一物理量 与另一物理量 之间存在物理规律 。
量纲分析的基本原理是相似不变性假设:令 ,则有 。这正是“物理规律不因单位换算而改变”这一原理的数学表述。
由此可见,比值 应仅依赖于单位换算的系数 ,亦即以 为自变量的一元函数 。那么,欲证 的齐次性,只需证明 即可。
首先,可以看出 ,因为按照 这一定义,有 ,依相似不变性假设,作代换 并不会改变此式,故 。
对 两边求 的导数,得到 ,然后令 ,得到常微分方程: ,分离变量可得 (其中 是常数),两边直接积分【用到 (积分常数项全部合并为一项 )】得到—— 。由于 ,故 ,因而得到 。
多元函数的情况是平凡【仅依物理量的不同而被分别赋予了各自的 值】的,可由以上论证直接推广【把常微分换成偏微分,照这个手续,把物理量们挨个儿走一遍】而得—— (不失一般性,所有的物理量作为自变量时都视为向量)。
是因为你现在学习到的内容还处于线性法则的初级阶段。在一定范围内,任何表达式都可以做微分近似,从而表现为和某个物理量成线性关系,然后为了简单一般会以源物理量为0的位置定义目标物理量为0的位置,就表现为简单乘法。
实际上需要加减法的也非常多,比如合力,比如波的叠加,比如质量和能量等等。它们通常不表现为定律,而是一条潜移默化的规则:相同物理量是可加的。
加法和乘法组合形成线性系统,这才是线性物理法则的全貌。准确来说应该是加法和卷积,乘法只是与常数卷积的特殊情况。
更进一步说,将法则表示为线性系统,只是因为线性系统数学性质好容易研究而已,相对论、半导体、非晶体等理论充斥着各种非线性效应,因为它们太难了,所以不太适合在初级阶段进行教学。
试着答一下,抛砖引玉。有几个角度看待这个问题:
这位问主可以看看这篇硬科普。
或许会更好的理解这个乘法的疑惑。
==========
不是学霸,但是想强答一个。
问主的这个问题太大,而问题描述又有点细,而且子问题还不少,影响了答主们的放肆和奔放。 笑ing。
先说个题外话,我的高数老师,曾经曰过:数学家不一定是物理学家,但是物理学家一定是数学家。
这个题外话其实是个引子,为什么两个学科都要用数学?因为数学是一门语言,且仅仅是语言。个人比较接受这样的描述:不要对所有的数学表达去寻找对应的世界参照物。
再回来针对问主的问题主干进行回答陈述:
当年欧拉公式出来后,活生生的开创了一个新空间,正交,我们设定的物理空间的规则,都是基于时间(流)来描述正交关系,而正交关系在切片时间或者说时间点上,数学语言的描述语法就是乘法,而我们看到的这个乘法还是被多次简化的公式描述。
如果问主学了微积分,广义相对论,时间和空间以及几大场的转换后,那么就能理解这些公式后面的面孔。上述这些公式都有对应的连续态的微积分描述形式,一个连续时间的正交关系。
而作为低年级的学生,我们先学的是自然数,去描述和认识我们眼睛看到的世界,这个习惯会影响我们去描述和认识抽象的虚拟空间(或者模拟空间是否更加合适)。
===============
再多说一句,刚才写着写着想到了一个科幻作品的内容,大意是最厉害的宇宙武器是什么,文中的答案是改变原点。刚才想了下,改变原点算个毛。最厉害的武器是改变正交关系。
=======
除了正交外,还有一个常用关系是非正交的相交,通过三角函数和圆来实现较高效率的运算。通常正交和三角关系可以用来解释绝大部分的问题。
因为涉及求和的部分已经帮你按照定义合并了
简单来说就是能够加减的东西量纲就是一样的 我们习惯把这种东西重新定义成一个物理量
什么合力 总能量 总作用量 哈密顿量之类的就不说了
最能把这个原则体现的很明显的是爱因斯坦张量
然后剩下的部分看起来就只有乘法了
更何况你列举所谓的乘法的形式,也不过就是X=Y 我写成X-Y=0不就变成加法了吗
加法保留几项是为了突出本质,我们要保留出最体现物理意义的部分,以便公式本身足够精炼,或者说,好看。
比如爱因斯坦方程的左边是时空几何,右边是物质场
比如热力学第一定律的这个形式dU=TdS-pdV,意思一目了然。但你一定要写成d(total Energy)=0可不可以?当然可以。
再比如麦克斯韦方程,你看到一大坨眼花缭乱的东西,那你知不知道它可以写成d*F=*J和dF=0?
再比如单粒子薛定谔方程,如果你想把动能算符和势能项单独研究你就有加法,如果你关注的东西是量子力学的基本规律,要把能量看成整体那就只有一个哈密顿算符。
即便你举的例子也并不那么准确
E=mc^2
明明是
E=m0/sqrt(1-vv/cc)*cc
谁说这里面只有乘法?