百科问答小站 logo
百科问答小站 font logo



混凝土技术真的是靠经验去蒙的吗? 第1页

  

user avatar   wang-yi-liao-bu-qi-de-zhong-guo-zhi-zao- 网友的相关建议: 
      

出品| 网易新闻学院

作者| 须臾千秋

  什么是人类历史上最伟大的材料?恐怕非钢筋混凝土莫属。小到我们住的居民楼,大到跨海大桥、摩天大楼、公路高铁……人类文明的每一个角落都充斥着混凝土。

  一堆砂子、一堆石子、几袋水泥和一桶水,搅拌均匀,砌成你想要的形状,过几天就可以变得硬如岩石,无怪乎工程师们造了一个字:砼(tong2)来表示混凝土,人工石嘛!很生动形象有木有?

(左边是水泥,它加了砂子、石子和水之后才叫混凝土,可不要搞错了)

(一)混凝土的历史与人类文明一样久远

  混凝土的使用要追溯到9000年前。在公元前7000年,以色列王国的加利利城就使用了简易的“混凝土”制作地板,当时的人使用煅烧的生石灰与砂子混合,在空气中缓慢硬化,最后居然也形成了强度。后来,罗马人又在这种材料的基础上加入了天然的火山灰,制造了表现更好的“混凝土”。正是用这种朴素的天然混凝土材料,罗马人修建了庞贝的大体积剧院、浴室和遍布城市的下水道。

(七千年前的以色列加利利城,地板使用的就是“水泥”)

  不过,那时的人们并不清楚混凝土的原理,只是拿着天然的材料互相混合,质量也不稳定。随着古罗马帝国的衰亡,没有了庞贝火山天然的优质火山灰,这项技术也就失传了。

  一直到1824年,英国的花匠阿斯普丁将石灰石与黏土混合煅烧,形成了我们当代人使用的水泥的前身,然而,用它制作的混凝土在当时并没有比其它建筑材料强多少,因此销路并不好。

  在19世纪初,天然石材还是建筑材料的主流,而当时世界上最好的建筑石材产自波特兰。为了打开销路,商家动了个歪心眼:把当时的水泥起名为“波特兰水泥”,让人误以为它和波特兰石有什么关系,进而忽悠大家来买。

(与水泥并没有什么关系的波特兰石——除了颜色有一点像)

(二)在科学的加持下,混凝土一骑绝尘

  尽管现代混凝土刚诞生的时候十分可怜,但随着科学的进步,混凝土开始逐渐发起了光。

  1887年,法国科学家亨利发现了水泥的真实组分,接下来的几十年里,水泥水化形成强度的机理开始逐渐为人所知。掌握了原理,科学家们开始逐步改良水泥的烧制工艺,总结出混凝土的配比与强度规律,再依照规律,根据需求来选择合适的混凝土配比。

  终于到了20世纪中叶,一个典型的建筑工地已经不再是小工一筐一筐地搬砖,然后瓦工一块一块地砌好;而是工人支好模板、拌好混凝土,捆扎钢筋笼,再将混凝土一股脑地倒上去,用振捣棒之类的东西来回振捣密实,最后抹平。相比起老老实实地砌砖,实在是优越到不知道哪里去了。

(20世纪典型的混凝土施工场景)

  你以为这样就足够了吗?差得远呢!

(三)庞大的建设量,逼迫科学家们想新的办法

  到了20世纪后期,随着全世界土木工程建设量的增大、高层建筑的增加和劳动力成本的上升,人们逐渐发现,混凝土也没有那么“万能”了。

  大楼施工到了30层,要把混凝土吊到100米的高空,光是这一步就要了亲命:这一斗一斗地吊上去,要多少天才能吊足一层的用量。等吊上去,混凝土早就硬了。好不容易把混凝土都吊上去,要把它平整无缝隙地铺满一层,又要上百个工人拿振捣棒振上一个下午。照这样下去,一栋摩天大楼盖好,一代人都过去了。

  随着大楼越盖越高,对混凝土的强度要求也越来越大。要想混凝土强度高,就要少加水。可是加水少了,混凝土又拌不开。这样一来,混凝土就变得越来越不好用。这可怎么办呢?

(干硬的混凝土搅拌不开,就会形成孔洞,严重危害安全)

  答案就是使用“减水剂”。在混凝土中加入减水剂,只要一点点,就可以让混凝土变稀。它通过让水泥颗粒带上同种负电荷,相互排斥,让水泥颗粒就像一颗颗滚珠一样互相脱离,从而增强混凝土的流动性。

(减水剂工作原理,将水泥颗粒分散开)

  加了减水剂之后,最显而易见的好处就是可以减少混凝土的用水,让混凝土的内部结构更加致密,不仅强度大幅提高,而且孔隙少了,耐久性也变得更好了。

  同时,它又让混凝土易于流动,便于成型,不再需要费时费力地振捣了。以上这些都还不是最重要的。最重要的是,减水剂的引入,开启了混凝土输送新世界的大门:泵送!

  加了合适比例的减水剂之后的混凝土,可以像水一样流动。这样一来,混凝土就不必再像过去那样一斗一斗地吊上楼,而是直接拿根钢管,一端通向楼顶,另一端通向一台强力泵车。

  强力泵将混凝土顺着钢管泵上百米高空,楼上再也不需要上百个工人拿着振捣棒一处一处振捣了,只要有几个工人操纵泵管就好。混凝土泵到了楼上,自动就会流平,工人只要适当地用振捣棒“修整“一下形状就好。几滴小小的减水剂,解放了成千上万的劳力,同时也大大加快了施工速度。

(21世纪的混凝土浇筑场景)

(四)现代混凝土的背后,学问不小

  光有减水剂,就能制出上面说的这种高性能混凝土吗?显然,事情远没有那么简单。

  其实,单纯的减水剂不是个稀罕东西,早在1930年代,美国人就已经发明了混凝土减水剂并申请了专利。到1980年代,当代最常用的聚羧酸减水剂也被发明了出来。

  然而,在混凝土的实际使用中,问题还是相当多。有时候,混凝土加了某种减水剂,凝结速度特别慢,浇筑之后迟迟不凝结,影响工程。更坏的情况是,混凝土加了减水剂可凝结速度变快了,在泵管里爬到一半就把管堵上了。有时候混凝土泵上去之后,发现明明混合得很好的水泥浆、石子和砂子分离开了,石子沉在最底下,最上面还浮着一层水:离析了。这样的混凝土只能直接打掉作废——没错,还要用料斗一斗一斗地运到楼下去。

  除了减水剂,混凝土中的麻烦事儿还多着呢。水泥和矿物掺和料的比例和种类会影响混凝土的强度、凝结时间和流动性。就连我们以为“只是占个地方“的砂子和石子,也必须满足良好的级配。如果石子的尺寸稍有不对,那么即使减水剂用得再多再好,由于石子之间的阻力,混凝土也很难泵得动。

  这些恼人的问题伴随着混凝土技术的发展始终存在。泵送混凝土看起来酷炫,用起来麻烦事多着呢!

(五)高性能混凝土研究的重任交给了中国

  从21世纪开始,发达国家的建设逐渐停了下来,而中国超高层建筑的建设则开始了井喷式的发展。仅2016年一年,中国就建成了84栋200米以上的高楼。这样,解决高性能泵送混凝土各项“疑难杂症”的重任就落在了中国工程师们的头上。

  泵送混凝土的质量,直接关系到超高层建筑的安全。为此,各大科研院所、施工单位都加入到了这项重大课题的攻关当中。

  泵送混凝土的凝结时间是施工的重中之重。对此,国内建材企业投入大量精力开展对混凝土外加剂的研究。目前,新型的外加剂早已不是过去那种单纯的减水剂了,而是集减水、缓凝、引气等功效于一体的高效外加剂。混凝土强度需要多强、要泵多高,甚至罐车到工地要多久,都可以考虑在内,进而调整外加剂的种类和用量。

  此外,不起眼的骨料也是研究的重点。高性能的混凝土绝不是随便用些石子就可以的,而是大石子、中石子、小石子按比例混合,级配优良,并与砂子的尺寸无缝衔接。这样可以最大限度地提高流动性、减小浆体的用量和对泵管壁的磨损。

(骨料的级配优化后,流动性和密实度都得到了提升)

  除了混凝土本身,输送混凝土的泵管也大有学问。在中国尊等超高层工程的建设中,泵管上都密布各种传感器,既要测量并监控混凝土的泵压,又要监测泵管的磨损情况、及时替换磨损严重或者堵塞的泵管。别看混凝土脏兮兮的,每一步的背后都精密得很。

  通过多方面的研究与海量的工程经验,中国科研人员终于在高性能泵送混凝土领域做出了巨大的突破。2015年7月7日上午,全球首次混凝土千米泵送试验在华南第一高楼取得成功。这意味着,中国已经完全掌握了千米高楼建设的核心技术和关键的数据资料。

  对于中国人来说,千米高楼的建设已经不再有技术上不可逾越的障碍了。中国不仅仅是在高度上领先。通过千米泵送运输到位的混凝土强度达到了100兆帕,比一般摩天大楼使用的混凝土强度还高上一倍。此外,混凝土的凝结时间、离析程度乃至对泵管弯角处的磨损程度都得到了有效的控制。

  如同一百年前一样,如今,相比起工程上的成功,中国的科学家们更关注的,是成功背后的机理,包括流态混凝土的流体力学规律,还有水泥浆体水化的深层次原因等。在未来,掌握了更加本质的科学原理的人类,一定可以将混凝土这个“九千岁”,玩出更多的新花样,更好地造福人类。

结语

  中国基建的快速发展,对混凝土技术的需求十分迫切,这促使中国在高性能泵送混凝土方面取得了许多突破。从泵送混凝土的凝结时间到骨料配比再到输送混凝土的泵管,中国先后解决了高性能泵送混凝土的各项“疑难杂症”,千米高楼的建设已经不再有技术上不可逾越的障碍。

作为世界上认知度最高的标签,中国制造(Made in China)正寻求战略升级。「了不起的中国制造」专栏,力邀行业权威、资深玩家,呈现他们眼中的中国创新之路。

投稿请联系newsresearch_ntes@163.com,稿件一经刊用,将提供千字800元的稿酬。

——————————————————————————————————

欢迎关注《了不起的中国制造》官方微博

欢迎关注《了不起的中国制造》网易号

编辑| 史文慧


user avatar   xu-zhu-tian-25 网友的相关建议: 
      

本人水泥专业中技毕业,从事水泥厂化验室十多年,接着步入商砼,从事商砼7年,从材料检验员到工地员到实验室主任,期间读了土木工程本科,拿了中级职称。做了十多个小区。

实事求是的说,这行经验大于理论,理想很丰满,现实很残酷。1,材料方面,混凝土质量好坏,沙石质量是主要原因。资源极其匮乏,几乎没有天然沙了。沙的含泥量越来越大,8%以上经常碰到,山砂,水洗砂,沿海地区的氯离子超标海砂。石子含石粉含泥量多,山皮石等等。2,水泥厂与用户始终是脱节的,水泥比表面积越来越大,早期强度越来越高,造成高标混凝土7天后几乎不增长了。3,粉煤灰,假货满天飞,连发电厂也装粉磨设备磨制煤灰了。4,外加剂,化工材料暴涨,行业竞争激烈,生存空间越来越小,优胜劣汰,大规模生产,才能降成本。留下来的厂家,反而质量有保证。5,重点来了,施工方面。先说设计,现在很多设计师,要么初出茅庐,没经验。要么是老江湖,良心被狗吃了,设计时,与厂家勾结,比如膨胀剂型号,电梯尺寸等等。工人方面,你想想,本身混凝土用砂石的含泥量大,又被工人恶意加水,水灰比又大。含泥量是一刀,水灰比又一刀,两刀致命。。甲方永远赶工期,施工方拼命赶商砼。。


user avatar   zhuxiaobao 网友的相关建议: 
      

你猜这是什么?

这是混凝土里的一朵玫瑰花!

事实上,这是电子显微镜下混凝土中 monosulfate (AFm phase, Alumina ferric oxide monosulfate phase)的照片。

二十世纪后半叶混凝土业界最伟大的成就之一,就是让混凝土技术成为了一门材料科学,通过材料科学、化学、结构工程、工程力学等领域的科学家、工程师、科研工作者们的不懈努力,我们终于可以用科学的方法来描述、研究、预测、评估混凝土这个非常复杂的材料,混凝土也像高性能陶瓷、高性能合金、高分子聚合物、高性能塑料等等工程材料一样,成为材料科学新的研究对象。

在这之前,我们只能靠经验蒙。蒙的结果有时候还可以,但更多的时候是惨不忍睹的。很多混凝土结构十年不到就出问题了,要么钢筋锈蚀,要么碱骨料反应严重,要么表皮全开裂,要么抗渗性能降低到不能接受的地步……为了维修这些出问题的混凝土结构,我们不得不花费大量的人力物力和时间金钱。而且由于基础设施建设的规模一般都比较庞大,很多时候真的是「拆了东墙补西墙」,刚刚修好这边,那边又不行了。

仅以美国为例,统计资料显示2004年美国全国用于维修混凝土结构的投资高达200亿美金,而因为混凝土中的钢筋锈蚀造成的拆除、重建、维修、加固等损失更是高达一年1200亿美金。更重要的是,因为总的资金是有限的,把有限的资金用来维修旧的出问题的混凝土结构,意味着就没有钱建造新的混凝土结构了,社会急需的新道路、新桥梁、新水坝很可能会因为资金紧张而无法完工。如果不修旧的,旧的就会出问题,桥会塌,大坝会崩溃;如果修旧的,那就没钱建新的,就无法用基础设施来促进经济发展。进退两难,举步维艰,而这一切的根本原因很可能是因为当初设计建造的不科学。

事实上,混凝土工业是全球规模最大的产业之一,是温室气体排放的主要产业之一,也是全球消耗自然资源最多的产业。混凝土是全球产量最大的工业品,每人每年平均三吨。水泥厂生产水泥的化学反应需要高温,化学反应本身再加上燃料的燃烧,每生产一吨水泥就要释放一吨的二氧化碳,这还是技术比较新、设备比较好的水泥厂;对于那些陈旧的小水泥厂,可能附近整个地区都会是灰蒙蒙的。

消耗了这么多的自然资源,排放了这么多的温室气体,顺带着污染了水泥厂周围的环境,最后弄出来一堆用不了十年二十年就会出问题的产品,坏掉了还没地方扔,全变成了建筑垃圾。至少在我看来,这是赤裸裸的对人类的犯罪,是坚决不能接受的。

也许你会说,没觉得有那么多混凝土结构十几年就不行了,也没见过坏的不像样子的混凝土结构,为什么呢?因为很多其它原因,你身边的很多混凝土结构不到十几年就已经被拆掉重建了,又一次为GDP的增长做贡献去了。

也许你会说,关我什么事儿呢?十几年后的事情十几年以后再说,我先干我这个工程,拿到钱再说。如果您这么想,那我也没办法。但是我知道,那些造三鹿奶粉、苏丹红食品的肯定也是类似的想法。

某种意义上,加固维修的巨额花销都是在为当初设计建造时候的错误买单。如果当初工程师们能够蒙的好一点点,就能为现在节省这每年上千亿美金的开支。显然,蒙是不靠谱的,我们需要比蒙更好的方法。什么是更好的方法呢?不同的人有不同的见解。

有的人会杀鸡宰羊,放鞭炮,挑好日子,不让女性朋友下工地,他们认为这样就会避免工程事故,提高工程质量;有的人依靠经验,一切以老把式、老师傅教的为准,以前都是这样干的,所以这次也一样;还有些人会依靠科学,用化学、力学的知识来解释问题,用实验、分析来解决问题。

也许这三种办法都可以奏效,但显然它们的成功率和可以达到的上限是不一样的。如果你认为第一种比第三种还要好,显然我们也没有进一步对话的必要了。

什么是科学的方法?科学就是以事实为根据,以实践为标准。

看不清微观结构?我们就用显微镜,甚至电子扫描显微镜。搞不清水化机理?我们就用纯的C3S、纯的C3A……每一个化学成分都单独测试。搞不清反应的流程?我们就用核磁共振,监控每一个我们感兴趣的反应。

不确定长期的抗冻融性能?那就把试件在冰箱里反复冻融好几个月。不确定长期的碱骨料活性?那就在把试件在氢氧化钠溶液里泡两年。不确定长期的硫离子侵蚀?那就把试件在不同的硫离子环境里监控五十年。

这是我们混凝土材料课上的一张数据图,注意看横坐标,最大值是45,单位是年

美国内政部复垦局负责美国西部的水利工程建设,为了解决混凝土水坝抗硫离子侵蚀的问题,他们在二战时展开了这项实验,实验的数据采集一直持续了四十多年。这四十多年的坚持,不仅仅能帮助内政部兴建维护混凝土水坝,更重要的是,它提供了我们对混凝土抗硫离子侵蚀的第一手资料。

类似的实验有很多,每一项实验、每一项研究都能推进我们对混凝土材料的认知,都能修正我们的理论。千千万万个这样的研究合在一起,共同构成了我们的混凝土材料科学。

根据我们已知的混凝土材料科学,我们甚至已经有了混凝土材料的计算机水化模型。就像工程师设计结构会用 SAP2000、ETABS 或者 PKPM 等软件分析结构的受力性能,不需要真正建造这个结构物,就能在电脑上预测结构的情况,继而优化结构设计;混凝土科学家也有相应的软件,不需要真正的制作混凝土,就能在电脑上模拟混凝土的性能,继而优化混凝土的配比。

美国商务部的国家标准技术研究所(NIST)的 VCCTL 软件就是其中之一,VCCTL 是 Virtual Cement and Concrete Testing Laboratory 的缩写。输入你的混凝土配比,比如水灰比、水泥用量、骨料用量等等参数,输入你的水泥的化学成分,输入你的 SCMs 的成分,输入外加剂的种类、剂量,输入环境参数,就可以模拟混凝土的水化反应。你甚至可以输入显微镜照片,直接输入第一手的化学成分信息。

模拟水化反应,得到模拟的水化微观结构,继而输出混凝土的强度、弹性模量、抗渗透性能等等。通过这些分析结果,优化混凝土配比,然后再模拟测试,然后再优化再测试。虽然这不能代替现场实验,但是这可以指明现场实验的方向,而且节省了实际实验的时间和费用。

也许你觉得这些不够科学,没错,如果你像谢尔顿那样执着的话,这些的确不像理论物理那么「科学」。但如果你放宽一点标准,混凝土科学绝对跟很多其它「科学」的「科学」程度是一样的。

这是我老婆贴在家里的一张海报,里面的每一个箭头、每一根线都是好几篇或者好几十篇论文,很多都是 CNS,甚至有一些是诺贝尔奖得主的成果。这是一个很直观的科学的图形化表述,一门科学就是由这些千千万万的点点滴滴组成的。

也许你会说,虽然知道这些,但是也没有用处,我们一样治不了癌症,或者,我们一样不能保证高质量的混凝土。没错,科学不是万灵药,伪科学或者反科学才标榜自己是万灵药。

当初火药发明的时候,很多人也觉得没有用处,类似的例子有很多,大刘在《三体》里是这么说的:

“想象一个古代的王国,他们的技术也在进步,能为士兵造出更好的刀啊剑啊长矛啊,甚至还有可能造出像机关枪那样连发的弓箭呢,但……”
大史若有所思地点点头,“但如果他们不知道物质是由原子、分子组成的,就永远造不出导弹和卫星,科学水平限制着呢。”

有时候,科学不见得比经验或者瞎蒙的效果更好,就像早期的火枪还不如弓弩,但它们有着不一样的未来。因为现在经验比科学更管用,所以就嘲笑和鄙视科学,这显然是没有远见的行为。人类的技术进步,最终还是由辛勤工作的科学家和工程师们共同推进的。

如果食品厂都是靠经验蒙着放添加剂,你还敢吃吗?如果汽车厂都是靠经验蒙着造刹车,你还敢开车吗?同样,为什么蒙着造混凝土就是可以接受的呢?

现在都这样,不代表这样就是对的。如果继续这样下去,留给我们子孙后代的只会是一堆建筑垃圾和一个千疮百孔的地球。




  

相关话题

  杆件受拉增加刚度,受压时要考虑压杆失稳的问题,可是预应力混凝土却比普通混凝土刚度要大,怎么解释? 
  土木工程师希望收到什么生日礼物? 
  请问读了材料是不是真的没出路了? 
  假如我有把物质的基本组成一眼看穿的能力,我在材料学的大坑里面会得到怎样的发展? 
  如何看待 B 站视频「关于我在设计院当牛做马大半年拿了 1381.81 年终奖这件事」? 
  一个一块钱硬币的材料成本是多少? 
  混凝土和水泥的区别是什么? 
  我大一是西华大学电气专业的,后面就经过考试转到了土木工程,因为大一没有学过,我挂了好多科,会被退学吗? 
  工程中有哪些可以极大增加作业效率但是还没被广泛应用的工法技巧? 
  建筑之乡的南通六建破产,之前南通一建破产,土木/水利行业是不是真的走向末路了? 

前一个讨论
如果发现新大陆的是中国,而不是西方,世界该怎样发展?
下一个讨论
你读过哪些毁三观的小说?





© 2024-10-31 - tinynew.org. All Rights Reserved.
© 2024-10-31 - tinynew.org. 保留所有权利