百科问答小站 logo
百科问答小站 font logo



一般来说,三层神经网络可以逼近任何一个非线性函数,为什么还需要深度神经网络? 第1页

  

user avatar   shi-guan-ya 网友的相关建议: 
      

因为从approximation error(拟合误差)的角度,无论是实验结果来看,还是从理论分析来看,大部分情况下“深”都比“宽”更有效。

理论层面的话,分享一篇我比较喜欢的paper里的结果(Why Deep Neural Networks for Function Approximation?,ICLR 2017),作者是UIUC的Shiyu Liang和R. Srikant。

简单来说,这篇文章证明了,如果想要达到 的拟合误差(approximation error),深度为常数(与 无关)的神经网络需要 个神经元,也就是说,shallow neural network的神经元数量随着精度( )的上升多项式增长。然而,深度为 的神经网络只需要 个神经元,也就是说,deep neural network的神经元数量随着精度的上升对数增长。换言之,想要达到同样的拟合误差,更深的神经网络需要的神经元数量远小于层数少的神经网络。


user avatar   zr9558 网友的相关建议: 
      

歪个楼,深度学习的教材里面一般都会提到这个定理。

Universal Approximation Theorem(1989)

Stone-Weierstrass Theorem(1885)

在一百年之前,数学家已经有一个类似的结论,其实用多项式就足够逼近闭区间上面的任意连续函数了。




  

相关话题

  如何评价AWS的图神经网络框架DGL? 
  深度学习attention机制中的Q,K,V分别是从哪来的? 
  深度学习在无人驾驶汽车上面的运用有哪些? 
  能否使用神经网络来判断奇偶数? 
  多任务学习成功的原因是引入了别的数据库还是多任务框架本身呢? 
  神经网络中,bias有什么用,为什么要设置bias,当加权和大于某值时,激活才有意义? 
  CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别? 
  为什么交叉熵(cross-entropy)可以用于计算代价? 
  神经网络中,bias有什么用,为什么要设置bias,当加权和大于某值时,激活才有意义? 
  为什么dropout正则化经常在视觉方面使用而不是其他? 

前一个讨论
如何看待温柔junz最新视频《豫章书院曝光者温柔,深陷“网络暴力”泥潭》 并声称自己一生没有做坏事?
下一个讨论
如何评价「神经网络本质不过是初中生都会的复合函数」?





© 2025-04-27 - tinynew.org. All Rights Reserved.
© 2025-04-27 - tinynew.org. 保留所有权利