百科问答小站 logo
百科问答小站 font logo



2015 年在你的研究领域最重要的研究成果是什么? 第1页

  

user avatar   sunkenship 网友的相关建议: 
      

1. 细胞内的液体结构(separated liquid phase)及其在神经疾病中的可能意义.

一句话摘要: 细胞内有些蛋白质可以在液滴 (油滴), 凝胶 (果冻), 和纤维沉淀 (海胆...)三种形态之间转换, 这一过程的病变有可能导致可怕的神经疾病.

一点背景.

细胞是这样的:

里面充满了各式各样的小作坊: 细胞核. 线粒体. 内质网. 高尔基体. 溶酶体. 等等.

这些作坊都具有膜质结构, 也就是用一层<或两层>油脂的膜把膜内的环境和细胞质分离开来.

但细胞里还有些其他的小作坊:

比如 P body. RNA granules. nucleolus (核内小体).

它们也自成一体, 但却没有一个膜包在外面. 成分组成上, 一般是一些蛋白质和RNA裹在一起. 都是水溶性的物质, 却不会分开, 也不会打散了"溶解"在细胞质里.

这是一种怎样的物理结构哩.

2009年, 德国的 Hyman 实验室, 第一次表明, 在线虫细胞里的 P body , 具有"液滴" (liquid drops) 的性质. 这就好比在水里的一滴一滴的油滴一样. 油和水可以共存在一个体系里, 但却不会互相融合.

判断是否具有液滴属性有三个基本标准:

1. 形态. 在正常, 未有外力的情况下, 表面张力导致液滴呈球形.

2. 流动性. 在液滴里的物质(RNA/蛋白质)应当可以无阻隔的任意流动.

3. 结合性. 两滴液滴互相靠近的时候, 应当能够结合成一个新的大液滴.

有兴趣的同学可以研究下这篇文章(

ncbi.nlm.nih.gov/pubmed

)

后来几年, 陆续又有报导表明, nucleoli 和一些其他的 RNA granules也是一种"液滴"的存在 (

ncbi.nlm.nih.gov/pubmed

)

那么, 是什么原因导致这样液滴的形成的呢?

研究这一问题的重要人物当属 UT Southwestern 的 Dr. Steven McKnight. McKnight实验室首先于2012年发现了, 在试管中, 提纯出来的一些蛋白质会在不同温度条件下, 从液态变成水凝胶(hydrogel)的状态. (水凝胶就是一种类似果冻的质地.) 这些蛋白质都具有一个特性, 都具备结合RNA的能力 (RNA binding protein). 在氨基酸组成上, 它们都有一段相似的序列结构, 被称之为 "LC domain". (参考文献:

sciencedirect.com 的页面

)

把这个报导和之前的研究结合在一起, 就有了一些很有意思的假说. 因为细胞里大部分的这种<液滴>, 里面的主要成分都是RNA和可以结合RNA的蛋白质, 有很多都具有LC结构, 那么会不会这些蛋白质的性质导致了"液滴"的存在, 甚至在不同条件下, 也可以像在试管里一样, 从液滴变为凝胶状呢?

于是来到了2015年. 首先, 相继有井喷式的数篇报导验证表明了某些蛋白质可以在"液滴",凝胶之间转换 (

ncbi.nlm.nih.gov/pubmed

;

ncbi.nlm.nih.gov/pubmed

;

ncbi.nlm.nih.gov/pubmed

;

ncbi.nlm.nih.gov/pubmed

;

cell.com 的页面

). 这些报导不仅验证了McKnight 2012年在试管里的实验, 并且直接在细胞体内也观测到了液滴形态的存在. 更进一步的是, 这些液滴在一定的条件下, 可以大量聚集在一起,形成固态的沉淀和纤维状突起. 比如这样 (Patel et al., 2015):

液滴 大液滴 纤维状沉淀

来张纤维沉淀的特写:

活像一颗大海胆 :D

最最勾起人们G点的是, 这个海胆样的家伙大家以前见过, 在老年痴呆患者的神经细胞里, 满是这玩意. 虽然是另外一种蛋白质 (Abeta amyloid), 但科学界的普遍看法是, 正常情况下这种蛋白在细胞里好好的, 慢慢的却会变质, 会相互之间聚集在一起, 从细胞质里沉淀出来, 并且形成上图一样的发散形状的纤维结构. 这种结构对细胞有毒, 会渐渐杀死神经细胞. 等脑子里的神经细胞死到一定数量, 人就痴呆了.

不过在这一系列研究里, 研究的对象并不是老年痴呆症里的这种Abeta, 而是具有结合RNA能力的一些蛋白, 例如: FUS, hnRNPA1 和 hnRNPA2. 这里重点讲一下FUS. FUS是一个和疾病有关的蛋白. FUS基因的突变会导致一种神经退行性疾病: 肌萎缩性侧索硬化(amyotrpnic lateral sclerosis,ALS), 俗称渐冻人症. 主要病理为运动神经的逐渐死亡, 随之带来的肌肉萎缩, 无法控制, 瘫痪和呼吸困难 (就跟霍金那样).

有意思的是, 之前提到的这几篇研究里都表明, 带有ALS突变的FUS蛋白, 相较于正常的FUS, 更容易自发的从液滴态聚集成沉淀, 并且更难返回到液滴态. 在正常液滴的模式下, 蛋白和蛋白之间的互相作用和流动, 以及他们所催化的生物反应, 极有可能在形成固态沉淀之后, 就便的缓慢甚至无法完成了. 可以想象的是, 因突变而异常的FUS功能受损, 有可能影响到整个液滴作为一个独立的工作单元的生物职能, 甚至最后导致了细胞的紊乱和凋亡, 进而表现为疾病. 其实不仅是ALS, 还有很多神经疾病, 包括帕金森, 舞蹈症, 疯牛病等等, 的病理都显示有类似毒性的沉淀. 所以这里研究的FUS沉淀的机理, 可能同样适用于这些其他疾病. 不过需要指出的是, FUS沉淀和Abeta沉淀在性质上还是有差别的 (

ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function: Neuron

)

综上, 关于蛋白质液滴形态的发现, 不仅开创了对非膜包裹的亚细胞结构机理的研究, 在人类认识细胞运作的研究中有着巨大突破; 更揭示了一个可能的导致神经疾病的机理. 如果可以用一定手段减缓或者阻止液滴-->沉淀的反应, 相信这会是一条很有希望治疗这些疾病的途径.

----------------------------------------------------------------------------------------------------------------------------

- 放眼整个生物/生物工程领域, 毫无疑问 CRISPR 是当下最火最前沿的发现和突破, 具体的在

@Yang Liu

的回答里已经很详尽了.

- 我在这里提两个基础的生命科学, 具体来说是神经科学里的新发现. 这两个研究还处在科学发现和研究阶段, 暂时还没有医药的应用, 虽然本人非常坚信它们日后不管是对人类了解生命本身, 还是在医疗治病方面, 都会有极大的重要性.

- 需要指出的是, 两项研究都并非一夜之间从无到有, 而是像CRISPR和大部分科学成果一样, 都经历了起码几年的从原始发现, 到更多的证据支持, 直到在业内被认可其真实性和重要性的过程.

- <写的简直跟一段难啃的木头一样>

- 原谅鄙人拙劣的生物中文.


user avatar   zhang-li-53-12-93 网友的相关建议: 
      

抛几块砖,专业领域:高分子科学。

1. 发现聚苯乙烯塑料可被黄粉虫体内微生物降解。

这个研究是北航与斯坦福大学的一个合作项目。 将聚苯乙烯塑料作为唯一碳源,碳-13同位素示踪实验证明,聚苯乙烯被黄粉虫完全降解矿化为二氧化碳和利用转化为虫体脂肪。而起作用的并不是黄粉虫本身,而是其肠道内的微生物。

聚苯乙烯是四大通用塑料之一。主链全碳链的结构赋予了其极高的稳定性,因此在自然环境下很难降解,产生了严重的“白色污染”,这个研究为解决废弃塑料污染问题提供了全新的思路。

2. 抑制燃油爆炸的高分子添加剂

飞机一般都需要携带大量的燃料来完成飞行任务。但是燃料多了也就带来的安全隐患。尤其是经历碰撞后,燃油极易形成微小的雾状液滴,从而更易燃烧爆炸。并且以往的空难事故表明,很多的遇难者并不死于空难的撞击,而是死于飞机撞击地面后的火灾与爆炸。

以往为了减少燃料形成的雾状物就是向里面添加超高分子量(500万以上)的液态高分子,虽然能够有效抑制细小液滴的形成,但是分子链过长容易相互缠绕结块堵塞发动机燃料泵。

所以加州理工学院的Ming-Hsin Wei就想到使用特殊的“智能”型高分子添加剂,它可以依据外部的刺激调整自己的长度。什么意思呢?他使用的是含有特殊端基的聚合物,平时的状态下,高分子自身首尾成环,这种情况下不会堵塞燃料泵,而一旦出现外力碰撞或者高速流动,分子环在剪切力作用下打开,并相依靠端基的互连接成超高分子量的超分子聚合物并发挥其抑制燃料雾化的作用。

下图是在雾化燃烧模拟实验中,普通燃油(上)与含有该添加剂燃油(下)的效果对比照片。

3. γ - 丁内酯成功聚合,并且其聚合物可完全循环利用

这是美国科罗拉多州立大学Eugene Y.-X. Chen组的神作。以往认为γ-丁内酯五元环是极其稳定的,所以无法将其开环聚合。但是该组创造性地引入了合适的催化剂与聚合温度控制,成功地将该单体进行开环聚合。

所得的聚合物为脂肪族聚酯,具有非常好的生物相容性与环境友好特性,并且一个非常独特的地方在于,经过热处理后,聚合物完全降解为单体,因此可以完全重复循环利用。非常有希望开发成新的可再生、可回收塑料。

4. 可用于纱窗的除霾材料

斯坦福大学的Yi Cui利用聚丙烯腈(PAN)的电纺织技术制备了一种具有较高透明度的膜材料。在制备工艺上控制其纤维的直径与纤维之间孔洞的大小,可以选择性的让空气透过,而PM2.5等颗粒就被过滤下来。左下图为使用前的电镜图,右下图为使用后电镜图,可以看到有明显的雾霾颗粒吸附。经过定量监测发现,即便经过100小时雾霾环境下使用,除霾效果依然可以在95%以上。

想象一下,夏天雾霾天气的时候再也不用闷着不开窗了,直接安上这种材料的纱窗,比室内用空气净化器还好使。

当然,目前的一个缺点在于,长时间使用后透明度往往下降,当然如果能开发成不是太贵的耗材,用久了了可以换新的,估计大众也愿意使用。

当然,还有很多非常有意思、有意义的工作,时间关系就先写到这里了。因为身为实验狗的我还要做实验去呢!

新年快乐!

参考文献:

1. Yang, Y.; Yang, J.; Wu, W.; Zhao, J.; Song, Y.; Gao, L.; Yang, R.; Jiang, L., Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environ.sci.technol 2015,49 (20), 12080-12086.

2. Wei, M.-H.; Li, B.; David, R. L. A.; Jones, S. C.; Sarohia, V.; Schmitigal, J. A.; Kornfield, J. A., Megasupramolecules for safer, cleaner fuel by end association of long telechelic polymers. Science 2015,350 (6256), 72-75.

3. Hong, M.; Chen, E. Y. X., Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat Chem 2016,8 (1), 42-49.

4. Liu, C.; Hsu, P. C.; Lee, H. W.; Ye, M.; Zheng, G.; Liu, N.; Li, W.; Cui, Y., Transparent air filter for high-efficiency PM2.5 capture. Nat Commun 2015,6, 6205.


user avatar   li-lei-up 网友的相关建议: 
      

总之,槽边往事的读者总能相处得特别轻松。




  

相关话题

  汞在我们的日常生活中有多重要? 
  王延轶学术水平如何? 
  截止至2019年,人类发射了多少颗人造卫星? 
  接触的人是个体现象还是能代表一些人? 
  你见过哪些极品论文? 
  人类和所有动物界的毛发,为啥只有人类的头发和胡须会一直不停的生长? 
  真的有人是因为喜欢科研才读研的么?如果是,乐趣在哪? 
  如何看待饶毅最新回应:树欲静而风不止,劝裴钢的学生凌堃不要帮倒忙? 
  如何看待饶毅科学最新文章:中国“无科研造假”元年:但愿“空前”也是“绝后”? 
  有哪些类似于“真空中的球形鸡”的谬误推论? 

前一个讨论
Cream, cheese, butter和milk是什么关系?
下一个讨论
如何评价深圳机场新航站楼的设计?





© 2025-01-24 - tinynew.org. All Rights Reserved.
© 2025-01-24 - tinynew.org. 保留所有权利