pairwise learning to rank 的方法可以分为两大类。
第一类是诸如ranknet这类方法,它们通过一些特殊的设计让模型依靠“样本对”的信息来学习得到每个样本的score。所以得到这类方法最后的全局排序结果很简单,就是用所有样本的score来排序即可。
另一类方法是基于优先函数的方法。这类方法的整个过程分为两个阶段,第一阶段是用机器学习模型来学习两个样本之间的优先关系,例如f(x1, x2)=1表示样本x1优先于x2(x1应该排在x2前面),f(x1, x2)=-1表示样本x2优先于x1(x1应该排在x2后面)。从题主的问题来看,可能问的是“当我们已经训练出了优先函数f之后,如何对所有样本进行排序,并且使该排序在最大程度上与f的结果一致”。这个问题在学界被称为Rank Aggregation(排列聚合)。
Rank Aggregation问题之所以存在是因为优先函数f是被训练出来的,它无法保证一定满足传递率这种对排序非常重要的性质。回想一下实数排序算法,它们其实依赖的是比较符(如小于符号)满足传递率。Rank Aggregation在1997年的“Learning to order things”这篇文章中已经被证明是NP困难的。因此后续的研究主要在针对性设计一些高效算法来寻找较优解,而不是最优解。
关于各种方法,我之前一篇文中有详细介绍,题主可以参考。
这里还是简单介绍一些。
“Learning to order things”这篇文章中的方法因为稍微复杂,所以不列举了,直接看那篇文章。
其它一些后续的方法一般比较“经验”,基本没太多理论的东西。例如,假设我们有x1,x2,...,xn个待排序样本。有些方法会用每个样本的supporter来作为它最后的ranking score。样本xi的suppoter的计算如下:
而另一些方法会把上面的f(x1, x2)的输出改为概率,而不是-1或1。
总之,方法很“经验”。