百科问答小站 logo
百科问答小站 font logo



不能直接计算导数值时,有什么优化算法? 第1页

  

user avatar   zi-yuan-35 网友的相关建议: 
       Bayesian optimization

大意是我们首先对目标函数形状有个先验,然后在每次迭代 1. 在当前对目标函数形状的后验估计下(当然首次迭代就直接用先验),在某个“最可能是最优”的地方取点,获得其函数值;2. 根据刚才的点及其函数值,更新函数的后验估计。

上面说的“最优位置”一般是两个指标的折衷:1. 在当前后验估计下,函数最优值的位置(exploitation);2. 尽量也试一试其他的位置,说不定有惊喜(exploration)。

以流行的

GP-UCB

(Gaussian Process - Upper Confidence Bound)为例。我们把目标函数看成一个高斯过程(

Gaussian process

)。那么在第次迭代,我们取,其中和分别为上一次迭代的后验均值和后验标准差在处的值,为某个系数(看论文);然后通过和更新后验估计并得到和。不了解怎么更新的看维基页。很明显一项对应exploitation,而一项对应exploration。论文证明了这个策略的误差界。

这个东西有各种各样的推广,比如说针对 time-varying 的目标函数,比如说如何使所需迭代数更小。比较有意思的一篇论文是

Bayesian optimization explains human active search

,从实验角度证明了 Bayesian optimization(不仅仅是GP-UCB)与人类优化策略之间的相似性。




  

相关话题

  数理背景不强,如何有效的自学科学计算(计算经济学)? 
  有哪些适合入门且较全面的运筹学书籍可以推荐一下吗? 
  机器学习中的优化理论,需要学习哪些资料才能看懂? 
  大规模电阻的等效电阻计算/模拟应该如何做? 
  如果想大体地了解凸优化和非凸优化中比较重要的概念、理论知识和算法应该看哪些书籍或者论文? 
  如何构造一个初值,使得这个数列是发散的? 
  Fortran数值计算真的比C快吗,经测试是一样快的,是不是很多人都在以讹传讹? 
  不能直接计算导数值时,有什么优化算法? 
  5⁴³²¹ 与 4⁵³²¹ 哪个更大? 
  如何简要介绍 sign problem in quantum Monte Carlo method? 

前一个讨论
有哪些名字看起来很low但内容却很有逼格的书?
下一个讨论
作为一名非数学专业(电子工程,物理)的学生,怎么样让自己的水平达到介于数学专业以及非数学专业的水平?





© 2025-02-06 - tinynew.org. All Rights Reserved.
© 2025-02-06 - tinynew.org. 保留所有权利