强化学习和模仿学习,本质都是在任务层面的(Task-level Control),而传统的机器人控制都是在动作级的(Action-level)和伺服级(Servo-level)。这个可以看下机器人的控制体系,比如《机器人学:建模规划与控制》这本书。
用汽车来比较,传统的机器人控制就是汽车的电控系统,强化学习和模仿学习要解决的是自动驾驶。
因为目前我们用到的机器人学科的传统教科书,基本都是2010年以前编写的,在这之前模仿学习和强化学习的功能还是比较弱的,所以大部分的内容还是从机电系统的角度去讲述机器人的,更多强调的是action level control或者motion control,而不是强调task level control。
另外,底层的运动控制强调的一般是控制的稳定和精准,所以做控制的一般做机器人动力学参数辨识,还要写个李亚普洛夫稳定性证明外加一些轨迹跟踪的误差分析等。
而上层的任务层一般强调的是泛化能力-generalization,所以可以看到很多的强化学习和模仿学习的工作,都要做些实验,证明自己的算法学习到的东西是可以在不同场景都能用的。
贴一张自己的ppt