湍流的尺度远大于分子平均自由程,仍然满足连续介质假设。大部分人认为NS 方程可以描述湍流(事实上也是这么做的)。
NS 方程系统是确定的,但确定的不代表可预测的。一个典型的例子,洛仑兹方程组,形式非常简单。但是这样的动力系统对初值扰动极端敏感,初值的误差误差随着时间会使解完全不一样,也就是著名的蝴蝶效应。当雷诺数大的时候,NS 方程更是这样。
可以把湍流看作一个随机过程场。DNS是一次具体的实现,就跟做了一次实验一样。打个比方,就像把扔十次骰子看做一件事,你得到十个1,就可是看作一次DNS 。DNS的主要困难在于湍流的多尺度导致要完全解析所有尺度,网格必须很细,计算量太大。复杂算例根本没法用。 为了降低计算量,提出LES ,大尺度直接解析,小尺度建模或者用耗散代替。
注意DNS /LES 和RANS的区别。前者相当于做了一次实验,每次做结果都可能不同;后者RANS 得到的是每一时刻随机场的均值。
湍流的尺度远大于分子平均自由程,仍然满足连续介质假设。大部分人认为NS 方程可以描述湍流(事实上也是这么做的)。
NS 方程系统是确定的,但确定的不代表可预测的。一个典型的例子,洛仑兹方程组,形式非常简单。但是这样的动力系统对初值扰动极端敏感,初值的误差误差随着时间会使解完全不一样,也就是著名的蝴蝶效应。当雷诺数大的时候,NS 方程更是这样。
可以把湍流看作一个随机过程场。DNS是一次具体的实现,就跟做了一次实验一样。打个比方,就像把扔十次骰子看做一件事,你得到十个1,就可是看作一次DNS 。DNS的主要困难在于湍流的多尺度导致要完全解析所有尺度,网格必须很细,计算量太大。复杂算例根本没法用。 为了降低计算量,提出LES ,大尺度直接解析,小尺度建模或者用耗散代替。
注意DNS /LES 和RANS的区别。前者相当于做了一次实验,每次做结果都可能不同;后者RANS 得到的是每一时刻随机场的均值。
这是我看到的最准确的总结。
总的来说,就是中国的高考相对公平,所以性价比极高,所以其他活动都可以适当让步。
这个推送到我首页是什么鬼?
这个赞数比这个问题回答赞数还多的是什么鬼?
看到很多人都反映不公平黑张艺兴的,人家起码人品好吧,有礼貌,这又是挡了哪路神仙
既然我诚心诚意的回答了,还是说个人名吧
我非常同意那些高赞的答案,毕竟人民群众的眼睛是雪亮的
这个推送到我首页是什么鬼?
这个赞数比这个问题回答赞数还多的是什么鬼?
看到很多人都反映不公平黑张艺兴的,人家起码人品好吧,有礼貌,这又是挡了哪路神仙
既然我诚心诚意的回答了,还是说个人名吧
我非常同意那些高赞的答案,毕竟人民群众的眼睛是雪亮的
哪位点子王的主意送去省级封闭学校?不会又是什么半军事化管理吧?我要是你父亲先把当初提这个主意的人打到住院。