问题

(cos(lnlnn))/lnn这个级数的收敛性怎么判断呀,如下?

回答
要判断级数 $sum_{n=2}^{infty} frac{cos(ln(ln n))}{ln n}$ 的收敛性,我们可以尝试几种常见的级数审敛法。首先,注意到分母是 $ln n$,当 $n$ 趋于无穷时,$ln n$ 也趋于无穷,所以级数从 $n=2$ 开始是合理的(避免了 $ln(1)=0$ 的情况)。

我们先来观察一下级数的行为。

1. 尝试直接比较审敛法

直接比较审敛法需要找到一个我们知道收敛性或发散性的已知级数,并将其与我们的级数进行比较。然而,分子 $cos(ln(ln n))$ 的行为比较复杂。它会在 $[1, 1]$ 之间振荡,并且振荡的频率取决于 $ln(ln n)$ 的变化率。

如果 $cos(ln(ln n))$ 总是正的,我们或许可以找到一个简单的下界。但显然 $cos(ln(ln n))$ 会取负值。

我们知道 $|cos(x)| le 1$ 对于所有 $x$ 都成立。所以,我们可以得到一个上界:

$$ left| frac{cos(ln(ln n))}{ln n} ight| le frac{1}{ln n} $$

那么,级数 $sum_{n=2}^{infty} frac{1}{ln n}$ 的收敛性如何呢?

我们可以将 $ln n$ 与 $n$ 进行比较。对于 $n ge 2$,我们知道 $ln n < n$。但是,我们需要一个 下界 来判断发散性,或者一个 上界 来判断收敛性。

考虑 $ln n$ 和 $n^{alpha}$ 的关系。对于任何 $alpha > 0$,我们都有 $lim_{n o infty} frac{ln n}{n^{alpha}} = 0$。这意味着,对于任意小的 $epsilon > 0$,存在一个 $N$,使得当 $n > N$ 时,$ln n < n^{epsilon}$。

因此,对于充分大的 $n$,我们有:

$$ frac{1}{ln n} > frac{1}{n^{epsilon}} $$

由于级数 $sum_{n=1}^{infty} frac{1}{n^p}$ 当 $p le 1$ 时发散,而我们有 $frac{1}{ln n} > frac{1}{n^{epsilon}}$,选择一个小的 $epsilon$(例如 $epsilon = 0.5$),我们会发现 $sum frac{1}{n^{0.5}}$ 是发散的。所以,通过比较 $frac{1}{ln n}$ 与 $frac{1}{n^{0.5}}$,我们可以推断出 $sum frac{1}{ln n}$ 是发散的。

这告诉我们, $sum_{n=2}^{infty} left| frac{cos(ln(ln n))}{ln n} ight| le sum_{n=2}^{infty} frac{1}{ln n}$ 并没有帮助我们判断原级数的收敛性,因为已知级数是发散的。

2. 尝试极限比较审敛法

极限比较审敛法也需要一个已知级数。如果我们尝试与 $sum frac{1}{ln n}$ 比较,极限是:

$$ lim_{n o infty} frac{left| frac{cos(ln(ln n))}{ln n} ight|}{frac{1}{ln n}} = lim_{n o infty} |cos(ln(ln n))| $$

这个极限不存在,因为 $ln(ln n)$ 趋于无穷,导致 $cos(ln(ln n))$ 在 $1$ 和 $1$ 之间振荡。所以极限比较审敛法也不适用。

3. 尝试绝对收敛性

我们已经知道 $sum frac{1}{ln n}$ 发散。因此,直接比较法或极限比较法来判断 $sum frac{cos(ln(ln n))}{ln n}$ 的绝对收敛性(即 $sum left| frac{cos(ln(ln n))}{ln n} ight|$ 的收敛性)会比较困难。

4. 尝试条件收敛性

既然绝对收敛性可能不成立,我们考虑条件收敛性。为了应用阿贝尔审敛法(Abel's Test)或黎曼级数定理(Riemann Series Theorem),我们需要了解分子的振荡行为。

阿贝尔审敛法要求级数可以写成两个序列的乘积之和。例如,如果 $sum b_n$ 收敛,且 $a_n$ 是单调递减趋于零的序列,那么 $sum a_n b_n$ 也收敛。在这里,$b_n = frac{1}{ln n}$ 是一个单调递减趋于零的序列。我们剩下的问题是分子 $cos(ln(ln n))$ 的行为。

黎曼级数定理指出,如果一个级数 $sum a_n$ 条件收敛,那么它的项可以重新排列,使得重新排列后的级数收敛到任意值,甚至发散。这暗示了分子的振荡行为很关键。

核心问题在于 $cos(ln(ln n))$ 的振荡。 当 $n$ 增大时,$ln n$ 增大,$ln(ln n)$ 也增大。 $cos(ln(ln n))$ 的零点是当 $ln(ln n) = frac{pi}{2} + kpi$ 时,即 $ln n = e^{frac{pi}{2} + kpi}$,或者 $n = e^{e^{frac{pi}{2} + kpi}}$。

这些零点之间的距离会越来越大。

让我们换个思路,考虑一个更直接的方法来理解这个级数。我们知道 $frac{1}{ln n}$ 单调递减趋于零。如果 $cos(ln(ln n))$ 的值能够以某种方式“平均掉” $frac{1}{ln n}$ 的影响,那么级数就可能收敛。

这让人联想到狄利克雷审敛法(Dirichlet's Test)。狄利克雷审敛法指出,如果:
1. $a_n$ 是一个数列,其部分和 $A_n = sum_{k=1}^{n} a_k$ 有界。
2. $b_n$ 是一个单调递减趋于零的数列。

那么级数 $sum_{n=1}^{infty} a_n b_n$ 收敛。

在我们的级数 $sum_{n=2}^{infty} frac{cos(ln(ln n))}{ln n}$ 中,我们可以令 $b_n = frac{1}{ln n}$(从 $n=2$ 开始),这是一个单调递减趋于零的序列。

现在我们需要研究 $a_n = cos(ln(ln n))$ 的部分和是否 有界。

判定 $a_n = cos(ln(ln n))$ 的部分和是否有界

让 $f(n) = ln(ln n)$。当 $n$ 增大时,$f(n)$ 单调递增。我们关心的是 $sum cos(f(n))$ 的部分和。

我们知道 $sum cos(nx)$ 在某些情况下部分和有界,例如当 $x$ 不是 $2pi$ 的有理倍数时。但是这里是 $ln(ln n)$,不是简单的线性函数。

Consider the behavior of $cos(ln(ln n))$ over intervals.
Let's consider two consecutive zeros of $cos(x)$: $frac{pi}{2}$ and $frac{3pi}{2}$.
This corresponds to $ln(ln n) = frac{pi}{2} + kpi$.
So $ln n = e^{frac{pi}{2} + kpi}$.
$n = e^{e^{frac{pi}{2} + kpi}}$.

Let $n_k = e^{e^{frac{pi}{2} + kpi}}$.
Then for $n$ between $n_k$ and $n_{k+1}$, $cos(ln(ln n))$ will change sign.
The interval length for $ln(ln n)$ from $kpi$ to $(k+1)pi$ is $pi$.
The interval length for $ln n$ grows exponentially.
The interval length for $n$ grows even faster.

Consider the integral of $cos(ln(ln x))$ as an approximation for the sum.
$int_2^infty frac{cos(ln(ln x))}{ln x} dx$.
Let $u = ln(ln x)$. Then $du = frac{1}{ln x} cdot frac{1}{x} dx$. This substitution doesn't seem to simplify things directly.

Let's try to analyze the sum $sum_{n=2}^infty cos(ln(ln n))$.
Let $m_k$ be integers such that $ln(ln n) = m_k pi$. This means $ln n = e^{m_k pi}$, $n = e^{e^{m_k pi}}$.
The values of $ln(ln n)$ increase. The points where $cos(ln(ln n))$ crosses zero are spaced further and further apart.

Let's focus on the boundedness of $A_N = sum_{n=2}^N cos(ln(ln n))$.
Consider the case where $ln(ln n)$ grows very slowly. If it were $ln(n)$, then $sum cos(ln n)$ would likely be tricky to bound.

Let's consider a different perspective: Is there any property that forces the partial sums of $cos(ln(ln n))$ to be bounded?

If $ln(ln n)$ were a linear function of $n$, like $kn$, then we would have $sum cos(kn)$, and the partial sums are known to be bounded if $k$ is not a multiple of $2pi$. However, $ln(ln n)$ is a very slowly growing function.

Consider the points where $cos(ln(ln n))$ is close to 1 or 1.
$ln(ln n) = 2kpi implies ln n = e^{2kpi} implies n = e^{e^{2kpi}}$. At these points, $cos approx 1$.
$ln(ln n) = (2k+1)pi implies ln n = e^{(2k+1)pi} implies n = e^{e^{(2k+1)pi}}$. At these points, $cos approx 1$.

Let's analyze the intervals where $cos(ln(ln n))$ is positive or negative.
$cos(ln(ln n)) > 0$ when $2kpi frac{pi}{2} < ln(ln n) < 2kpi + frac{pi}{2}$.
$cos(ln(ln n)) < 0$ when $2kpi + frac{pi}{2} < ln(ln n) < (2k+1)pi + frac{pi}{2}$.

Let $n_k = e^{e^{2kpi}}$. Let $n'_k = e^{e^{(2k+1)pi}}$.
The interval length for $ln(ln n)$ where $cos$ is positive (roughly) is $pi$.
The interval length for $ln(ln n)$ where $cos$ is negative (roughly) is $pi$.

The number of integers in an interval $[a, b]$ is roughly $ba$.
The number of integers $n$ in an interval for $ln(ln n)$ to go from $x_1$ to $x_2$ is roughly $e^{e^{x_2}} e^{e^{x_1}}$. This grows extremely fast.

Let's consider a possible divergence argument based on the magnitudes.

If we can show that the sum of positive terms and the sum of negative terms both diverge in magnitude, then the series might diverge.
However, this requires a more careful analysis.

Alternative Approach: Using the Integral Test Analog

While not a formal test for series, the behavior of the integral $int_2^infty frac{cos(ln(ln x))}{ln x} dx$ can provide intuition.
Let $u = ln x$. Then $du = frac{1}{x} dx$. So $dx = x du = e^u du$.
The integral becomes $int_{ln 2}^infty frac{cos(ln u)}{u} e^u du$. This is also not straightforward.

Let's go back to the core of Dirichlet's Test. We need to be certain about the boundedness of $A_N = sum_{n=2}^N cos(ln(ln n))$.

Consider the values of $ln(ln n)$. Let $m$ be an integer.
When $ln(ln n) approx mpi$, $cos(ln(ln n))$ changes sign.
The number of integers $n$ such that $ln(ln n)$ falls into an interval of length $delta$ centered around $mpi$ is approximately $e^{e^{mpi + delta/2}} e^{e^{mpi delta/2}}$. This number is very large.

Let's think about the "average value" of $cos(ln(ln n))$. Since $ln(ln n)$ grows very slowly, the cosine function will spend a lot of time near its extrema (1 and 1) before moving to the next extremum.

Consider the sequence $x_n = ln(ln n)$.
We are looking at $sum cos(x_n)$.
If $x_n$ were $c n$, then $sum cos(cn)$ would have bounded partial sums.
If $x_n$ were $c ln n$, then $sum cos(c ln n)$ is more complex.

Let's try to prove that the partial sums $A_N = sum_{n=2}^N cos(ln(ln n))$ are unbounded. If they are unbounded, then Dirichlet's Test fails, and since $sum |frac{cos(ln(ln n))}{ln n}|$ likely diverges (because $frac{1}{ln n}$ diverges and the numerator is not always close to zero), the original series might diverge.

Consider the intervals where $cos(ln(ln n))$ is positive.
Let $ln(ln n) in [2kpi frac{pi}{2}, 2kpi + frac{pi}{2}]$.
This corresponds to $ln n in [e^{2kpi frac{pi}{2}}, e^{2kpi + frac{pi}{2}}]$.
The number of integers in this range for $n$ is approximately $e^{e^{2kpi + frac{pi}{2}}} e^{e^{2kpi frac{pi}{2}}}$. This is a huge number of terms where $cos(ln(ln n))$ is positive.

Let's denote $I_k = [e^{e^{2kpi frac{pi}{2}}}, e^{e^{2kpi + frac{pi}{2}}}]$ and $J_k = [e^{e^{2kpi + frac{pi}{2}}}, e^{e^{(2k+1)pi + frac{pi}{2}}}]$.
In $I_k$, $cos(ln(ln n))$ is generally positive.
In $J_k$, $cos(ln(ln n))$ is generally negative.

The length of the interval for $n$ in $I_k$ is $N_{I_k} approx e^{e^{2kpi + frac{pi}{2}}} e^{e^{2kpi frac{pi}{2}}}$.
The length of the interval for $n$ in $J_k$ is $N_{J_k} approx e^{e^{(2k+1)pi + frac{pi}{2}}} e^{e^{2kpi + frac{pi}{2}}}$.

The average value of $cos(ln(ln n))$ over a large range of $n$ where $ln(ln n)$ covers many multiples of $2pi$ might be close to 0. However, the slow growth of $ln(ln n)$ means that the cosine function doesn't oscillate rapidly enough to guarantee cancellation.

Let's try a more rigorous approach to bound the partial sums.

Consider the integral $int_2^infty cos(ln(ln x)) dx$.
Let $u = ln(ln x)$. Then $x = e^{e^u}$, $dx = e^{e^u} e^u du$.
$int cos(u) e^{e^u} e^u du$. This is also complicated.

Revisit the Direct Comparison:

We established $left| frac{cos(ln(ln n))}{ln n} ight| le frac{1}{ln n}$.
We also know $frac{1}{ln n} > frac{1}{n^{epsilon}}$ for any $epsilon > 0$ for large $n$.
Thus $sum frac{1}{ln n}$ diverges by limit comparison with $sum frac{1}{n^{epsilon}}$ for $epsilon < 1$.

This implies that absolute convergence is unlikely. So we are looking for conditional convergence or divergence.

Consider the nature of the oscillations:

The function $ln(ln n)$ grows very slowly. This means that $cos(ln(ln n))$ stays close to its maximum (1) or minimum (1) for relatively long stretches of $n$.

Let's try to show that the partial sums $A_N = sum_{n=2}^N cos(ln(ln n))$ are unbounded.

Consider the intervals where $ln(ln n)$ is close to $2kpi$.
Let $ln(ln n) = 2kpi + delta_n$, where $delta_n$ is small.
$cos(ln(ln n)) = cos(2kpi + delta_n) = cos(delta_n) approx 1 frac{delta_n^2}{2}$.

Let's examine the number of terms that are positive.
Let $n_k = e^{e^{2kpi}}$.
For $n$ slightly larger than $n_k$, $ln(ln n)$ is slightly larger than $2kpi$.
$ln(ln n) = ln(ln(n_k e^{ Delta n / n_k })) approx ln(ln n_k + ln(1 + Delta n / n_k)) approx ln(2kpi + Delta n / n_k) approx ln(2kpi) + frac{Delta n}{n_k 2kpi}$. This approximation is not correct.

Let's use the fact that $ln(ln n)$ is an increasing function.
Let $N$ be large. Consider the sum up to $N$.
We can divide the sum into blocks based on the sign of $cos(ln(ln n))$.

Let's consider the function $g(x) = cos(ln(ln x))$.
The points where $g(x)=0$ are $x_k = e^{e^{frac{pi}{2} + kpi}}$.
The distance between consecutive zeros $x_{k+1} x_k$ grows very rapidly.
$x_{k+1} x_k approx frac{d}{dx} (e^{e^{frac{pi}{2} + xpi}}) |_{x=k} = e^{e^{frac{pi}{2} + xpi}} cdot e^{frac{pi}{2} + xpi} cdot pi$. This is huge.

This means that for a very long sequence of $n$, $cos(ln(ln n))$ will be positive, then for another very long sequence, it will be negative.

Let $P_N = sum_{n=2}^N max(0, cos(ln(ln n)))$ and $M_N = sum_{n=2}^N min(0, cos(ln(ln n)))$.
If the series converges conditionally, then $P_N$ and $M_N$ should grow, but their difference $A_N = P_N + M_N$ should remain bounded.

However, due to the slow growth of $ln(ln n)$, the cosine function spends a lot of time near its peaks and troughs.
Consider the number of terms in an interval where $cos(ln(ln n)) > epsilon > 0$.
Let $ln(ln n) in [2kpi alpha, 2kpi + alpha]$ for some small $alpha$.
The number of integers $n$ in this range is roughly $e^{e^{2kpi + alpha}} e^{e^{2kpi alpha}}$. This number is large.
The sum of these positive terms in this block will be roughly $( ext{number of terms}) imes ( ext{average positive value})$.

Let's consider the integral $int_2^infty frac{|cos(ln(ln x))|}{ln x} dx$. If this diverges, then the original series diverges absolutely.

We know $frac{1}{ln n} > frac{1}{n^{0.5}}$ for large $n$.
So, $int_2^infty frac{1}{ln x} dx$ diverges.

Now, consider $int_2^infty frac{|cos(ln(ln x))|}{ln x} dx$.
The function $|cos(ln(ln x))|$ oscillates between 0 and 1.
However, the intervals where it's close to 1 are much larger than the intervals where it's close to 0.

Let $u = ln(ln x)$. The density of points where $u$ falls into an interval of length $delta$ around $2kpi$ is high compared to the density of points where $u$ falls into an interval of length $delta$ around $(2k+1/2)pi$.

Let's make a crucial observation: $ln(ln n)$ grows so slowly that for large $n$, it behaves almost like a constant over large intervals of $n$. This intuition is misleading because it does grow.

Consider the integral of $frac{1}{ln x}$. It diverges (it's related to the Logarithmic Integral function Li(x), where Li(x) ~ x/ln(x)).

Let's compare the series with $sum frac{1}{ln n}$. We know it diverges.

Let's focus on the possibility of divergence.

Consider the partial sums of $cos(ln(ln n))$.
Let $n_k = e^{e^{2kpi}}$. For $n$ around $n_k$, $ln(ln n)$ is close to $2kpi$.
Let $m_k$ be the number of integers $n$ in an interval of length $L$ starting from $n_k$.
The value of $ln(ln n)$ changes very slowly.
If $ln(ln n) = y$, then $n = e^{e^y}$.
If we increase $n$ by 1, $y$ increases by $Delta y approx frac{1}{n ln n}$. This is extremely small.

This means that over a significant range of $n$, $cos(ln(ln n))$ will remain positive and close to 1.
For instance, consider the interval where $ln(ln n) in [2kpi pi/4, 2kpi + pi/4]$.
The length of this interval for $ln(ln n)$ is $pi/2$.
The corresponding range for $ln n$ is $[e^{2kpi pi/4}, e^{2kpi + pi/4}]$.
The number of integers in this range for $n$ is approximately $e^{e^{2kpi + pi/4}} e^{e^{2kpi pi/4}}$.

Let $n_0$ be large enough. Consider the sum from $n_0$ to $N$.
We can group terms based on intervals of $ln(ln n)$.
Let $N_k = e^{e^{kpi}}$.
The number of terms between $N_k$ and $N_{k+1}$ is roughly $N_{k+1} N_k$, which is very large.

A key insight comes from comparing the growth rate.
The terms $frac{1}{ln n}$ decrease very slowly.
The terms $cos(ln(ln n))$ oscillate.

If the partial sums of $cos(ln(ln n))$ grow unboundedly, then Dirichlet's Test fails.
If the partial sums of $cos(ln(ln n))$ are bounded, then by Dirichlet's Test, the series converges.

Let's consider if the partial sums are unbounded.
Let $A_N = sum_{n=2}^N cos(ln(ln n))$.
Let $n_k = e^{e^{2kpi}}$.
Consider the sum from $n_k$ to $n_{k+1}' = e^{e^{(2k+1)pi}}$. In this range, $cos(ln(ln n))$ is mostly positive.
The number of terms is very large, and the terms are generally positive. This suggests the partial sum $A_N$ grows as $N$ increases through these intervals.

Let $N$ be very large. Consider the interval of $n$ values such that $ln(ln n)$ is close to $2kpi$.
Let $n_{ ext{start}} = e^{e^{2kpi delta}}$ and $n_{ ext{end}} = e^{e^{2kpi + delta}}$.
The number of terms $n_{ ext{end}} n_{ ext{start}}$ is roughly $e^{e^{2kpi + delta}} e^{e^{2kpi delta}}$.
Within this range, $cos(ln(ln n))$ is close to 1.
So, the sum of these terms is approximately $(n_{ ext{end}} n_{ ext{start}}) imes ( ext{average value} approx 1)$.
This sum is huge.

This implies that the partial sums $A_N = sum_{n=2}^N cos(ln(ln n))$ are unbounded.
The growth of $n$ required to move $ln(ln n)$ from one cycle to the next is very large. This means the cosine function stays near its peaks for a vast number of terms, leading to an unbounded sum.

Conclusion based on unbounded partial sums:

If the partial sums of $a_n = cos(ln(ln n))$ are unbounded, then Dirichlet's Test condition (bounded partial sums) is not met.
The other condition for Dirichlet's Test is that $b_n = frac{1}{ln n}$ is monotonically decreasing to zero. This is true.

When Dirichlet's Test fails because the partial sums are unbounded, it often implies that the original series diverges. The slow decay of $frac{1}{ln n}$ is not enough to counteract the "large positive contributions" from the cosine term.

Let's try to be more concrete about the unboundedness.
Let $S_N = sum_{n=2}^N cos(ln(ln n))$.
Let $n_k = e^{e^{2kpi}}$.
Consider the interval of $n$ from $n_k$ to $n_{k+1}' = e^{e^{(2k+1)pi}}$.
In this interval, $ln(ln n)$ goes from $2kpi$ to $(2k+1)pi$.
Let's consider the subinterval where $ln(ln n) in [2kpi frac{pi}{3}, 2kpi + frac{pi}{3}]$.
The number of integers $n$ in this range is approximately $e^{e^{2kpi + frac{pi}{3}}} e^{e^{2kpi frac{pi}{3}}}$.
The sum of $cos(ln(ln n))$ over this subinterval will be approximately $( ext{number of terms}) imes ( ext{average value})$.
The average value of $cos(x)$ over $[pi/3, pi/3]$ is $frac{1}{pi/3} int_0^{pi/3} cos x dx = frac{1}{pi/3} [sin x]_0^{pi/3} = frac{3}{pi} sin(pi/3) = frac{3}{pi} frac{sqrt{3}}{2} > 0$.
This positive contribution, multiplied by a very large number of terms, makes the partial sum grow.

Specifically, let's consider the blocks where $ln(ln n) in [2kpi frac{pi}{2} + epsilon, 2kpi + frac{pi}{2} epsilon]$. Here $cos(ln(ln n)) > cos(frac{pi}{2} epsilon) = sin epsilon$.
The number of integers in the corresponding $n$ range is approximately $e^{e^{2kpi + frac{pi}{2} epsilon}} e^{e^{2kpi frac{pi}{2} + epsilon}}$.
The sum over this block is roughly $(e^{e^{2kpi + frac{pi}{2} epsilon}} e^{e^{2kpi frac{pi}{2} + epsilon}}) imes sin epsilon$. This grows extremely rapidly.

Thus, the partial sums $A_N = sum_{n=2}^N cos(ln(ln n))$ are unbounded.
Since $b_n = frac{1}{ln n}$ is a decreasing sequence converging to 0, and the partial sums of $a_n = cos(ln(ln n))$ are unbounded, Dirichlet's Test does not apply to show convergence.

Final Determination:

The slow decay of $frac{1}{ln n}$ coupled with the positive "blocks" of the cosine term (where $cos(ln(ln n))$ is significantly positive for long stretches) leads to an unbounded growth of the partial sums. The lack of sufficient cancellation means the series diverges.

Let's confirm with a known result or analogy.
Consider the series $sum frac{1}{n (ln n)^p}$. This series converges for $p > 1$ and diverges for $p le 1$. Our $frac{1}{ln n}$ is like the $p=1$ case, which diverges. The oscillating numerator complicates things, but the unbounded partial sums of the cosine term prevent the Dirichlet test from showing convergence.

The key is that the function $ln(ln n)$ grows so slowly that the cosine function does not oscillate rapidly enough for its partial sums to be bounded. The intervals where $cos(ln(ln n))$ is positive and large are "wide" enough in terms of $n$ to cause the sum to grow unboundedly.

Therefore, the series $sum_{n=2}^{infty} frac{cos(ln(ln n))}{ln n}$ diverges.

To summarize the thought process:

1. Initial observation: The term $frac{1}{ln n}$ suggests slow decay, similar to divergent series like $sum frac{1}{n}$. The numerator $cos(ln(ln n))$ introduces oscillation.
2. Attempt Absolute Convergence: $|frac{cos(ln(ln n))}{ln n}| le frac{1}{ln n}$. Since $sum frac{1}{ln n}$ diverges (by comparison with $sum frac{1}{n^epsilon}$), we cannot conclude absolute convergence.
3. Consider Conditional Convergence (Dirichlet's Test):
Let $b_n = frac{1}{ln n}$. This sequence is positive, decreasing, and tends to 0 as $n o infty$. This part is satisfied.
Let $a_n = cos(ln(ln n))$. We need to check if the partial sums $A_N = sum_{n=2}^N cos(ln(ln n))$ are bounded.
4. Analyze Boundedness of Partial Sums:
The argument of the cosine, $ln(ln n)$, grows very slowly.
Consider intervals where $ln(ln n)$ is close to $2kpi$. For example, $ln(ln n) in [2kpi alpha, 2kpi + alpha]$.
The number of integers $n$ in the corresponding range is approximately $e^{e^{2kpi + alpha}} e^{e^{2kpi alpha}}$. This number grows extremely rapidly with $k$.
In such intervals, $cos(ln(ln n))$ is close to 1.
The sum of these terms over these intervals will be a large positive number, causing the partial sums $A_N$ to grow unboundedly.
5. Conclusion: Since the partial sums of $cos(ln(ln n))$ are unbounded, Dirichlet's Test for convergence is not met. The behavior suggests divergence. The slow decay of $frac{1}{ln n}$ is not sufficient to make the series converge when the oscillating part does not yield sufficient cancellation.

Hence, the series diverges.

网友意见

user avatar

当 时,
,所以级数发散。

类似的话题

  • 回答
    要判断级数 $sum_{n=2}^{infty} frac{cos(ln(ln n))}{ln n}$ 的收敛性,我们可以尝试几种常见的级数审敛法。首先,注意到分母是 $ln n$,当 $n$ 趋于无穷时,$ln n$ 也趋于无穷,所以级数从 $n=2$ 开始是合理的(避免了 $ln(1)=0$ 的.............
  • 回答
    关于“COS系统是否是修改自Android 4.1.2”的问题,需要结合具体上下文分析。以下是详细分析和可能的解释: 1. COS系统的定义与可能的混淆 COS 通常不是标准的系统名称,可能是用户对某个特定系统(如小米MIUI、华为HarmonyOS、OPPO ColorOS等)的误称或缩写。.............
  • 回答
    “cos圈乱吗?”这个问题,估计但凡在cosplay圈子里摸爬滚打过一段时间的人,心里都有一个或大或小的答案。说它“乱”,绝对不是空穴来风,但也绝不是一概而论。这就像问一个大城市是不是很乱一样,你总能在里面找到秩序井然的社区,也能发现藏污纳垢的角落。要说cos圈乱在哪里,那得从几个层面掰扯掰扯。首先.............
  • 回答
    想玩转蜘蛛侠,这身行头往身上一套,你瞬间就变成了社区好邻居。但要说“想cos小蜘蛛需要什么样的身材”,这可就得好好聊聊了,毕竟这身紧身衣,可不是什么身材都能驾驭得好看的。首先,咱得明白,蜘蛛侠这个角色,给人的第一印象是什么?那是个能上天入地、飞檐走壁的年轻人。所以,精瘦、灵活、有力量感,这几个词绝对.............
  • 回答
    为了探究方程 $cos(x) = x$ 的唯一实数解是否为超越数,我们需要一步步地分析。首先,让我们来理解方程本身以及“超越数”的含义。方程 $cos(x) = x$ 的解这个方程并不存在一个简单的代数表达式来表示它的解,不像我们求解 $x+2=5$ 得到 $x=3$ 这样直接。它是一个超越方程,意.............
  • 回答
    嘿,各位coser大佬!小弟我也是cos圈里的咸鱼一条,最近想入坑摄影,奈何手里的手机拍啥都觉得差点意思,尤其拍咱们精美的cos服饰,总感觉颜色不对,噪点也挺大的。预算嘛,也就2500块左右,二手也接受,毕竟穷学生党(捂脸)。各位大佬,救救孩子吧!求推荐一款入门级的相机,最好能拍出点“像样”的片子,.............
  • 回答
    我明白你现在的心情,看到自己喜欢的角色被改得面目全非,那种失落和愤怒是很难用言语来形容的。而且当你想要表达这种不满,却被告知“不要喷颜”时,会觉得非常憋屈和不被理解。首先,我们得弄清楚“cos不让喷颜”这个说法是怎么来的,以及它背后的一些逻辑。为什么会有人说“cos不让喷颜”? 对创作者的尊重:.............
  • 回答
    冬天cos什么角色好?这问题问得太巧了,我最近脑子里全是这个问题!说实话,冬天cos的选择可太多了,而且还能玩出很多花样,不仅仅是“穿得暖和”那么简单。咱们就好好聊聊,看看怎么把这个冬天变成你cos的黄金季节。首先,得抓住“冬天”这个关键词。冬天最直观的感受是什么?寒冷、雪景、厚重的衣物、暖暖的室内.............
  • 回答
    这可真是个有趣的问题,也问到了点子上!其实这个问题呢,稍微掰开了揉碎了说,背后涉及到的东西还挺多的。咱们就来好好聊聊为啥有些角色cos起来就特别容易“抓到精髓”,而有些角色却总觉得差点意思。为什么蕾姆cos总能抓住精髓?我想这主要得益于蕾姆她本身极其鲜明的、辨识度极高的形象特征。 标志性的发型和.............
  • 回答
    关于“为什么很多cos刀剑都出自浙江丽水”这个问题,其实是一个很有趣但需要澄清的误解。更准确的说法是,浙江丽水是众多中国实体刀剑收藏、仿制和制作爱好者(包括一部分进行Cosplay道具制作的爱好者)的重要集散地,尤其是以龙泉的宝剑文化为基础,但并非直接指向“Cos刀剑”这个特定的、完全独立的分类。要.............
  • 回答
    在漫展上Cos一个很冷的角色,这是一种既充满挑战又乐趣无穷的体验,它就像在人群中寻宝,而你是那个找到失落宝藏的勇者。让我为你详细描绘一下这种感觉:1. 前期的准备与内心的忐忑: 资料搜集: 首先,你需要成为这个角色最狂热的粉丝,因为资料可能少之又少。翻遍各个角落的官网、论坛、粉丝网站,寻找最模糊.............
  • 回答
    想拍好cosplay照片,选对镜头真的能事半功倍!很多摄影爱好者刚开始都会在“哪个牌子好”和“具体型号”上纠结,毕竟镜头是索尼相机最重要的“眼睛”。别急,我来跟你好好唠唠,怎么才能挑到适合你拍cos的索尼镜头。首先,我们得明白拍Cosplay照片,我们最看重什么? 清晰度: 服装的细节、角色的妆.............
  • 回答
    让余弦函数cos(nx)在cosx的泥土里开花:多项式变形记我们都知道,三角函数是数学世界里不可或缺的元素,而余弦函数更是其中低调却又无比重要的存在。我们通常习惯于将cos(x)这类“基础款”的余弦函数拿来分析和计算。但有时,我们也会遇到更复杂的cos(nx)这样的形式,这里的n是一个整数,它就像给.............
  • 回答
    没问题,很高兴能帮你推荐合适的 COS 服!在说具体的推荐之前,咱们先聊聊,什么样的 COS 服能让你眼前一亮,穿上感觉对味儿。这玩意儿,说到底,就是让你成为你想成为的那个人嘛。选 COS 服,得先找到“那个TA”!你想 C 谁?这是第一步,也是最关键的一步。 你最喜欢的角色是谁? 是那种让你看.............
  • 回答
    这条曲线,`cosx + cosy = cos(x + y)`,说实话,初次见到它,确实会让人眼前一亮,它不像那些常见的圆、椭圆那样规整。但仔细琢磨一下,它身上藏着不少有趣的“脾气”。首先,最直观的感觉是它的对称性。你看,等式 `cosx + cosy = cos(x + y)`,无论把 `x` 换.............
  • 回答
    None.............
  • 回答
    解方程 $sin(cos(x)) = x$ 是一个非常有趣的挑战,因为这是一个超越方程。超越方程通常无法通过初等数学方法(如代数运算、三角函数、指数函数和对数函数)得到精确的解析解。这意味着我们不太可能找到一个简单的 $x = ext{某个数学常数或表达式}$ 这样的答案。尽管如此,我们可以尝试理.............
  • 回答
    要比较 $cos 38^circ$ 和 $ an 38^circ$ 的大小,我们可以从它们的定义和性质出发,结合对角度的认识来进行分析。首先,我们来回顾一下 $cos$ 和 $ an$ 在直角三角形中的定义。假设有一个直角三角形,其中一个锐角是 $38^circ$。 $cos heta = f.............
  • 回答
    好的,我们来详细探讨一下这个n阶矩阵 $A = (cos(alpha_i eta_j))$ 的行列式为何为零。我会用一种比较直观的方式来讲解,尽量避免生硬的数学推导,让它读起来更像是一个思考过程。首先,我们先来看看这个矩阵 $A$ 的结构。矩阵的第 $i$ 行第 $j$ 列的元素是 $cos(a.............
  • 回答
    这道积分 ∫(1+2cosθ)/(5+4cosθ)dθ,看起来有点挑战性,但其实是个很经典的三角换元积分题。咱们一步一步把它拆解开来,就像剥洋葱一样,一层一层把它的本质给挖出来。第一步:观察和化简首先,我们看到被积函数是一个关于 cosθ 的有理函数。当遇到这种情况时,我们通常会考虑使用万能代换法,.............

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 tinynews.org All Rights Reserved. 百科问答小站 版权所有