要判断级数 $sum_{n=2}^{infty} frac{cos(ln(ln n))}{ln n}$ 的收敛性,我们可以尝试几种常见的级数审敛法。首先,注意到分母是 $ln n$,当 $n$ 趋于无穷时,$ln n$ 也趋于无穷,所以级数从 $n=2$ 开始是合理的(避免了 $ln(1)=0$ 的情况)。
我们先来观察一下级数的行为。
1. 尝试直接比较审敛法
直接比较审敛法需要找到一个我们知道收敛性或发散性的已知级数,并将其与我们的级数进行比较。然而,分子 $cos(ln(ln n))$ 的行为比较复杂。它会在 $[1, 1]$ 之间振荡,并且振荡的频率取决于 $ln(ln n)$ 的变化率。
如果 $cos(ln(ln n))$ 总是正的,我们或许可以找到一个简单的下界。但显然 $cos(ln(ln n))$ 会取负值。
我们知道 $|cos(x)| le 1$ 对于所有 $x$ 都成立。所以,我们可以得到一个上界:
$$ left| frac{cos(ln(ln n))}{ln n}
ight| le frac{1}{ln n} $$
那么,级数 $sum_{n=2}^{infty} frac{1}{ln n}$ 的收敛性如何呢?
我们可以将 $ln n$ 与 $n$ 进行比较。对于 $n ge 2$,我们知道 $ln n < n$。但是,我们需要一个 下界 来判断发散性,或者一个 上界 来判断收敛性。
考虑 $ln n$ 和 $n^{alpha}$ 的关系。对于任何 $alpha > 0$,我们都有 $lim_{n o infty} frac{ln n}{n^{alpha}} = 0$。这意味着,对于任意小的 $epsilon > 0$,存在一个 $N$,使得当 $n > N$ 时,$ln n < n^{epsilon}$。
因此,对于充分大的 $n$,我们有:
$$ frac{1}{ln n} > frac{1}{n^{epsilon}} $$
由于级数 $sum_{n=1}^{infty} frac{1}{n^p}$ 当 $p le 1$ 时发散,而我们有 $frac{1}{ln n} > frac{1}{n^{epsilon}}$,选择一个小的 $epsilon$(例如 $epsilon = 0.5$),我们会发现 $sum frac{1}{n^{0.5}}$ 是发散的。所以,通过比较 $frac{1}{ln n}$ 与 $frac{1}{n^{0.5}}$,我们可以推断出 $sum frac{1}{ln n}$ 是发散的。
这告诉我们, $sum_{n=2}^{infty} left| frac{cos(ln(ln n))}{ln n}
ight| le sum_{n=2}^{infty} frac{1}{ln n}$ 并没有帮助我们判断原级数的收敛性,因为已知级数是发散的。
2. 尝试极限比较审敛法
极限比较审敛法也需要一个已知级数。如果我们尝试与 $sum frac{1}{ln n}$ 比较,极限是:
$$ lim_{n o infty} frac{left| frac{cos(ln(ln n))}{ln n}
ight|}{frac{1}{ln n}} = lim_{n o infty} |cos(ln(ln n))| $$
这个极限不存在,因为 $ln(ln n)$ 趋于无穷,导致 $cos(ln(ln n))$ 在 $1$ 和 $1$ 之间振荡。所以极限比较审敛法也不适用。
3. 尝试绝对收敛性
我们已经知道 $sum frac{1}{ln n}$ 发散。因此,直接比较法或极限比较法来判断 $sum frac{cos(ln(ln n))}{ln n}$ 的绝对收敛性(即 $sum left| frac{cos(ln(ln n))}{ln n}
ight|$ 的收敛性)会比较困难。
4. 尝试条件收敛性
既然绝对收敛性可能不成立,我们考虑条件收敛性。为了应用阿贝尔审敛法(Abel's Test)或黎曼级数定理(Riemann Series Theorem),我们需要了解分子的振荡行为。
阿贝尔审敛法要求级数可以写成两个序列的乘积之和。例如,如果 $sum b_n$ 收敛,且 $a_n$ 是单调递减趋于零的序列,那么 $sum a_n b_n$ 也收敛。在这里,$b_n = frac{1}{ln n}$ 是一个单调递减趋于零的序列。我们剩下的问题是分子 $cos(ln(ln n))$ 的行为。
黎曼级数定理指出,如果一个级数 $sum a_n$ 条件收敛,那么它的项可以重新排列,使得重新排列后的级数收敛到任意值,甚至发散。这暗示了分子的振荡行为很关键。
核心问题在于 $cos(ln(ln n))$ 的振荡。 当 $n$ 增大时,$ln n$ 增大,$ln(ln n)$ 也增大。 $cos(ln(ln n))$ 的零点是当 $ln(ln n) = frac{pi}{2} + kpi$ 时,即 $ln n = e^{frac{pi}{2} + kpi}$,或者 $n = e^{e^{frac{pi}{2} + kpi}}$。
这些零点之间的距离会越来越大。
让我们换个思路,考虑一个更直接的方法来理解这个级数。我们知道 $frac{1}{ln n}$ 单调递减趋于零。如果 $cos(ln(ln n))$ 的值能够以某种方式“平均掉” $frac{1}{ln n}$ 的影响,那么级数就可能收敛。
这让人联想到狄利克雷审敛法(Dirichlet's Test)。狄利克雷审敛法指出,如果:
1. $a_n$ 是一个数列,其部分和 $A_n = sum_{k=1}^{n} a_k$ 有界。
2. $b_n$ 是一个单调递减趋于零的数列。
那么级数 $sum_{n=1}^{infty} a_n b_n$ 收敛。
在我们的级数 $sum_{n=2}^{infty} frac{cos(ln(ln n))}{ln n}$ 中,我们可以令 $b_n = frac{1}{ln n}$(从 $n=2$ 开始),这是一个单调递减趋于零的序列。
现在我们需要研究 $a_n = cos(ln(ln n))$ 的部分和是否 有界。
判定 $a_n = cos(ln(ln n))$ 的部分和是否有界
让 $f(n) = ln(ln n)$。当 $n$ 增大时,$f(n)$ 单调递增。我们关心的是 $sum cos(f(n))$ 的部分和。
我们知道 $sum cos(nx)$ 在某些情况下部分和有界,例如当 $x$ 不是 $2pi$ 的有理倍数时。但是这里是 $ln(ln n)$,不是简单的线性函数。
Consider the behavior of $cos(ln(ln n))$ over intervals.
Let's consider two consecutive zeros of $cos(x)$: $frac{pi}{2}$ and $frac{3pi}{2}$.
This corresponds to $ln(ln n) = frac{pi}{2} + kpi$.
So $ln n = e^{frac{pi}{2} + kpi}$.
$n = e^{e^{frac{pi}{2} + kpi}}$.
Let $n_k = e^{e^{frac{pi}{2} + kpi}}$.
Then for $n$ between $n_k$ and $n_{k+1}$, $cos(ln(ln n))$ will change sign.
The interval length for $ln(ln n)$ from $kpi$ to $(k+1)pi$ is $pi$.
The interval length for $ln n$ grows exponentially.
The interval length for $n$ grows even faster.
Consider the integral of $cos(ln(ln x))$ as an approximation for the sum.
$int_2^infty frac{cos(ln(ln x))}{ln x} dx$.
Let $u = ln(ln x)$. Then $du = frac{1}{ln x} cdot frac{1}{x} dx$. This substitution doesn't seem to simplify things directly.
Let's try to analyze the sum $sum_{n=2}^infty cos(ln(ln n))$.
Let $m_k$ be integers such that $ln(ln n) = m_k pi$. This means $ln n = e^{m_k pi}$, $n = e^{e^{m_k pi}}$.
The values of $ln(ln n)$ increase. The points where $cos(ln(ln n))$ crosses zero are spaced further and further apart.
Let's focus on the boundedness of $A_N = sum_{n=2}^N cos(ln(ln n))$.
Consider the case where $ln(ln n)$ grows very slowly. If it were $ln(n)$, then $sum cos(ln n)$ would likely be tricky to bound.
Let's consider a different perspective: Is there any property that forces the partial sums of $cos(ln(ln n))$ to be bounded?
If $ln(ln n)$ were a linear function of $n$, like $kn$, then we would have $sum cos(kn)$, and the partial sums are known to be bounded if $k$ is not a multiple of $2pi$. However, $ln(ln n)$ is a very slowly growing function.
Consider the points where $cos(ln(ln n))$ is close to 1 or 1.
$ln(ln n) = 2kpi implies ln n = e^{2kpi} implies n = e^{e^{2kpi}}$. At these points, $cos approx 1$.
$ln(ln n) = (2k+1)pi implies ln n = e^{(2k+1)pi} implies n = e^{e^{(2k+1)pi}}$. At these points, $cos approx 1$.
Let's analyze the intervals where $cos(ln(ln n))$ is positive or negative.
$cos(ln(ln n)) > 0$ when $2kpi frac{pi}{2} < ln(ln n) < 2kpi + frac{pi}{2}$.
$cos(ln(ln n)) < 0$ when $2kpi + frac{pi}{2} < ln(ln n) < (2k+1)pi + frac{pi}{2}$.
Let $n_k = e^{e^{2kpi}}$. Let $n'_k = e^{e^{(2k+1)pi}}$.
The interval length for $ln(ln n)$ where $cos$ is positive (roughly) is $pi$.
The interval length for $ln(ln n)$ where $cos$ is negative (roughly) is $pi$.
The number of integers in an interval $[a, b]$ is roughly $ba$.
The number of integers $n$ in an interval for $ln(ln n)$ to go from $x_1$ to $x_2$ is roughly $e^{e^{x_2}} e^{e^{x_1}}$. This grows extremely fast.
Let's consider a possible divergence argument based on the magnitudes.
If we can show that the sum of positive terms and the sum of negative terms both diverge in magnitude, then the series might diverge.
However, this requires a more careful analysis.
Alternative Approach: Using the Integral Test Analog
While not a formal test for series, the behavior of the integral $int_2^infty frac{cos(ln(ln x))}{ln x} dx$ can provide intuition.
Let $u = ln x$. Then $du = frac{1}{x} dx$. So $dx = x du = e^u du$.
The integral becomes $int_{ln 2}^infty frac{cos(ln u)}{u} e^u du$. This is also not straightforward.
Let's go back to the core of Dirichlet's Test. We need to be certain about the boundedness of $A_N = sum_{n=2}^N cos(ln(ln n))$.
Consider the values of $ln(ln n)$. Let $m$ be an integer.
When $ln(ln n) approx mpi$, $cos(ln(ln n))$ changes sign.
The number of integers $n$ such that $ln(ln n)$ falls into an interval of length $delta$ centered around $mpi$ is approximately $e^{e^{mpi + delta/2}} e^{e^{mpi delta/2}}$. This number is very large.
Let's think about the "average value" of $cos(ln(ln n))$. Since $ln(ln n)$ grows very slowly, the cosine function will spend a lot of time near its extrema (1 and 1) before moving to the next extremum.
Consider the sequence $x_n = ln(ln n)$.
We are looking at $sum cos(x_n)$.
If $x_n$ were $c n$, then $sum cos(cn)$ would have bounded partial sums.
If $x_n$ were $c ln n$, then $sum cos(c ln n)$ is more complex.
Let's try to prove that the partial sums $A_N = sum_{n=2}^N cos(ln(ln n))$ are unbounded. If they are unbounded, then Dirichlet's Test fails, and since $sum |frac{cos(ln(ln n))}{ln n}|$ likely diverges (because $frac{1}{ln n}$ diverges and the numerator is not always close to zero), the original series might diverge.
Consider the intervals where $cos(ln(ln n))$ is positive.
Let $ln(ln n) in [2kpi frac{pi}{2}, 2kpi + frac{pi}{2}]$.
This corresponds to $ln n in [e^{2kpi frac{pi}{2}}, e^{2kpi + frac{pi}{2}}]$.
The number of integers in this range for $n$ is approximately $e^{e^{2kpi + frac{pi}{2}}} e^{e^{2kpi frac{pi}{2}}}$. This is a huge number of terms where $cos(ln(ln n))$ is positive.
Let's denote $I_k = [e^{e^{2kpi frac{pi}{2}}}, e^{e^{2kpi + frac{pi}{2}}}]$ and $J_k = [e^{e^{2kpi + frac{pi}{2}}}, e^{e^{(2k+1)pi + frac{pi}{2}}}]$.
In $I_k$, $cos(ln(ln n))$ is generally positive.
In $J_k$, $cos(ln(ln n))$ is generally negative.
The length of the interval for $n$ in $I_k$ is $N_{I_k} approx e^{e^{2kpi + frac{pi}{2}}} e^{e^{2kpi frac{pi}{2}}}$.
The length of the interval for $n$ in $J_k$ is $N_{J_k} approx e^{e^{(2k+1)pi + frac{pi}{2}}} e^{e^{2kpi + frac{pi}{2}}}$.
The average value of $cos(ln(ln n))$ over a large range of $n$ where $ln(ln n)$ covers many multiples of $2pi$ might be close to 0. However, the slow growth of $ln(ln n)$ means that the cosine function doesn't oscillate rapidly enough to guarantee cancellation.
Let's try a more rigorous approach to bound the partial sums.
Consider the integral $int_2^infty cos(ln(ln x)) dx$.
Let $u = ln(ln x)$. Then $x = e^{e^u}$, $dx = e^{e^u} e^u du$.
$int cos(u) e^{e^u} e^u du$. This is also complicated.
Revisit the Direct Comparison:
We established $left| frac{cos(ln(ln n))}{ln n}
ight| le frac{1}{ln n}$.
We also know $frac{1}{ln n} > frac{1}{n^{epsilon}}$ for any $epsilon > 0$ for large $n$.
Thus $sum frac{1}{ln n}$ diverges by limit comparison with $sum frac{1}{n^{epsilon}}$ for $epsilon < 1$.
This implies that absolute convergence is unlikely. So we are looking for conditional convergence or divergence.
Consider the nature of the oscillations:
The function $ln(ln n)$ grows very slowly. This means that $cos(ln(ln n))$ stays close to its maximum (1) or minimum (1) for relatively long stretches of $n$.
Let's try to show that the partial sums $A_N = sum_{n=2}^N cos(ln(ln n))$ are unbounded.
Consider the intervals where $ln(ln n)$ is close to $2kpi$.
Let $ln(ln n) = 2kpi + delta_n$, where $delta_n$ is small.
$cos(ln(ln n)) = cos(2kpi + delta_n) = cos(delta_n) approx 1 frac{delta_n^2}{2}$.
Let's examine the number of terms that are positive.
Let $n_k = e^{e^{2kpi}}$.
For $n$ slightly larger than $n_k$, $ln(ln n)$ is slightly larger than $2kpi$.
$ln(ln n) = ln(ln(n_k e^{ Delta n / n_k })) approx ln(ln n_k + ln(1 + Delta n / n_k)) approx ln(2kpi + Delta n / n_k) approx ln(2kpi) + frac{Delta n}{n_k 2kpi}$. This approximation is not correct.
Let's use the fact that $ln(ln n)$ is an increasing function.
Let $N$ be large. Consider the sum up to $N$.
We can divide the sum into blocks based on the sign of $cos(ln(ln n))$.
Let's consider the function $g(x) = cos(ln(ln x))$.
The points where $g(x)=0$ are $x_k = e^{e^{frac{pi}{2} + kpi}}$.
The distance between consecutive zeros $x_{k+1} x_k$ grows very rapidly.
$x_{k+1} x_k approx frac{d}{dx} (e^{e^{frac{pi}{2} + xpi}}) |_{x=k} = e^{e^{frac{pi}{2} + xpi}} cdot e^{frac{pi}{2} + xpi} cdot pi$. This is huge.
This means that for a very long sequence of $n$, $cos(ln(ln n))$ will be positive, then for another very long sequence, it will be negative.
Let $P_N = sum_{n=2}^N max(0, cos(ln(ln n)))$ and $M_N = sum_{n=2}^N min(0, cos(ln(ln n)))$.
If the series converges conditionally, then $P_N$ and $M_N$ should grow, but their difference $A_N = P_N + M_N$ should remain bounded.
However, due to the slow growth of $ln(ln n)$, the cosine function spends a lot of time near its peaks and troughs.
Consider the number of terms in an interval where $cos(ln(ln n)) > epsilon > 0$.
Let $ln(ln n) in [2kpi alpha, 2kpi + alpha]$ for some small $alpha$.
The number of integers $n$ in this range is roughly $e^{e^{2kpi + alpha}} e^{e^{2kpi alpha}}$. This number is large.
The sum of these positive terms in this block will be roughly $( ext{number of terms}) imes ( ext{average positive value})$.
Let's consider the integral $int_2^infty frac{|cos(ln(ln x))|}{ln x} dx$. If this diverges, then the original series diverges absolutely.
We know $frac{1}{ln n} > frac{1}{n^{0.5}}$ for large $n$.
So, $int_2^infty frac{1}{ln x} dx$ diverges.
Now, consider $int_2^infty frac{|cos(ln(ln x))|}{ln x} dx$.
The function $|cos(ln(ln x))|$ oscillates between 0 and 1.
However, the intervals where it's close to 1 are much larger than the intervals where it's close to 0.
Let $u = ln(ln x)$. The density of points where $u$ falls into an interval of length $delta$ around $2kpi$ is high compared to the density of points where $u$ falls into an interval of length $delta$ around $(2k+1/2)pi$.
Let's make a crucial observation: $ln(ln n)$ grows so slowly that for large $n$, it behaves almost like a constant over large intervals of $n$. This intuition is misleading because it does grow.
Consider the integral of $frac{1}{ln x}$. It diverges (it's related to the Logarithmic Integral function Li(x), where Li(x) ~ x/ln(x)).
Let's compare the series with $sum frac{1}{ln n}$. We know it diverges.
Let's focus on the possibility of divergence.
Consider the partial sums of $cos(ln(ln n))$.
Let $n_k = e^{e^{2kpi}}$. For $n$ around $n_k$, $ln(ln n)$ is close to $2kpi$.
Let $m_k$ be the number of integers $n$ in an interval of length $L$ starting from $n_k$.
The value of $ln(ln n)$ changes very slowly.
If $ln(ln n) = y$, then $n = e^{e^y}$.
If we increase $n$ by 1, $y$ increases by $Delta y approx frac{1}{n ln n}$. This is extremely small.
This means that over a significant range of $n$, $cos(ln(ln n))$ will remain positive and close to 1.
For instance, consider the interval where $ln(ln n) in [2kpi pi/4, 2kpi + pi/4]$.
The length of this interval for $ln(ln n)$ is $pi/2$.
The corresponding range for $ln n$ is $[e^{2kpi pi/4}, e^{2kpi + pi/4}]$.
The number of integers in this range for $n$ is approximately $e^{e^{2kpi + pi/4}} e^{e^{2kpi pi/4}}$.
Let $n_0$ be large enough. Consider the sum from $n_0$ to $N$.
We can group terms based on intervals of $ln(ln n)$.
Let $N_k = e^{e^{kpi}}$.
The number of terms between $N_k$ and $N_{k+1}$ is roughly $N_{k+1} N_k$, which is very large.
A key insight comes from comparing the growth rate.
The terms $frac{1}{ln n}$ decrease very slowly.
The terms $cos(ln(ln n))$ oscillate.
If the partial sums of $cos(ln(ln n))$ grow unboundedly, then Dirichlet's Test fails.
If the partial sums of $cos(ln(ln n))$ are bounded, then by Dirichlet's Test, the series converges.
Let's consider if the partial sums are unbounded.
Let $A_N = sum_{n=2}^N cos(ln(ln n))$.
Let $n_k = e^{e^{2kpi}}$.
Consider the sum from $n_k$ to $n_{k+1}' = e^{e^{(2k+1)pi}}$. In this range, $cos(ln(ln n))$ is mostly positive.
The number of terms is very large, and the terms are generally positive. This suggests the partial sum $A_N$ grows as $N$ increases through these intervals.
Let $N$ be very large. Consider the interval of $n$ values such that $ln(ln n)$ is close to $2kpi$.
Let $n_{ ext{start}} = e^{e^{2kpi delta}}$ and $n_{ ext{end}} = e^{e^{2kpi + delta}}$.
The number of terms $n_{ ext{end}} n_{ ext{start}}$ is roughly $e^{e^{2kpi + delta}} e^{e^{2kpi delta}}$.
Within this range, $cos(ln(ln n))$ is close to 1.
So, the sum of these terms is approximately $(n_{ ext{end}} n_{ ext{start}}) imes ( ext{average value} approx 1)$.
This sum is huge.
This implies that the partial sums $A_N = sum_{n=2}^N cos(ln(ln n))$ are unbounded.
The growth of $n$ required to move $ln(ln n)$ from one cycle to the next is very large. This means the cosine function stays near its peaks for a vast number of terms, leading to an unbounded sum.
Conclusion based on unbounded partial sums:
If the partial sums of $a_n = cos(ln(ln n))$ are unbounded, then Dirichlet's Test condition (bounded partial sums) is not met.
The other condition for Dirichlet's Test is that $b_n = frac{1}{ln n}$ is monotonically decreasing to zero. This is true.
When Dirichlet's Test fails because the partial sums are unbounded, it often implies that the original series diverges. The slow decay of $frac{1}{ln n}$ is not enough to counteract the "large positive contributions" from the cosine term.
Let's try to be more concrete about the unboundedness.
Let $S_N = sum_{n=2}^N cos(ln(ln n))$.
Let $n_k = e^{e^{2kpi}}$.
Consider the interval of $n$ from $n_k$ to $n_{k+1}' = e^{e^{(2k+1)pi}}$.
In this interval, $ln(ln n)$ goes from $2kpi$ to $(2k+1)pi$.
Let's consider the subinterval where $ln(ln n) in [2kpi frac{pi}{3}, 2kpi + frac{pi}{3}]$.
The number of integers $n$ in this range is approximately $e^{e^{2kpi + frac{pi}{3}}} e^{e^{2kpi frac{pi}{3}}}$.
The sum of $cos(ln(ln n))$ over this subinterval will be approximately $( ext{number of terms}) imes ( ext{average value})$.
The average value of $cos(x)$ over $[pi/3, pi/3]$ is $frac{1}{pi/3} int_0^{pi/3} cos x dx = frac{1}{pi/3} [sin x]_0^{pi/3} = frac{3}{pi} sin(pi/3) = frac{3}{pi} frac{sqrt{3}}{2} > 0$.
This positive contribution, multiplied by a very large number of terms, makes the partial sum grow.
Specifically, let's consider the blocks where $ln(ln n) in [2kpi frac{pi}{2} + epsilon, 2kpi + frac{pi}{2} epsilon]$. Here $cos(ln(ln n)) > cos(frac{pi}{2} epsilon) = sin epsilon$.
The number of integers in the corresponding $n$ range is approximately $e^{e^{2kpi + frac{pi}{2} epsilon}} e^{e^{2kpi frac{pi}{2} + epsilon}}$.
The sum over this block is roughly $(e^{e^{2kpi + frac{pi}{2} epsilon}} e^{e^{2kpi frac{pi}{2} + epsilon}}) imes sin epsilon$. This grows extremely rapidly.
Thus, the partial sums $A_N = sum_{n=2}^N cos(ln(ln n))$ are unbounded.
Since $b_n = frac{1}{ln n}$ is a decreasing sequence converging to 0, and the partial sums of $a_n = cos(ln(ln n))$ are unbounded, Dirichlet's Test does not apply to show convergence.
Final Determination:
The slow decay of $frac{1}{ln n}$ coupled with the positive "blocks" of the cosine term (where $cos(ln(ln n))$ is significantly positive for long stretches) leads to an unbounded growth of the partial sums. The lack of sufficient cancellation means the series diverges.
Let's confirm with a known result or analogy.
Consider the series $sum frac{1}{n (ln n)^p}$. This series converges for $p > 1$ and diverges for $p le 1$. Our $frac{1}{ln n}$ is like the $p=1$ case, which diverges. The oscillating numerator complicates things, but the unbounded partial sums of the cosine term prevent the Dirichlet test from showing convergence.
The key is that the function $ln(ln n)$ grows so slowly that the cosine function does not oscillate rapidly enough for its partial sums to be bounded. The intervals where $cos(ln(ln n))$ is positive and large are "wide" enough in terms of $n$ to cause the sum to grow unboundedly.
Therefore, the series $sum_{n=2}^{infty} frac{cos(ln(ln n))}{ln n}$ diverges.
To summarize the thought process:
1. Initial observation: The term $frac{1}{ln n}$ suggests slow decay, similar to divergent series like $sum frac{1}{n}$. The numerator $cos(ln(ln n))$ introduces oscillation.
2. Attempt Absolute Convergence: $|frac{cos(ln(ln n))}{ln n}| le frac{1}{ln n}$. Since $sum frac{1}{ln n}$ diverges (by comparison with $sum frac{1}{n^epsilon}$), we cannot conclude absolute convergence.
3. Consider Conditional Convergence (Dirichlet's Test):
Let $b_n = frac{1}{ln n}$. This sequence is positive, decreasing, and tends to 0 as $n o infty$. This part is satisfied.
Let $a_n = cos(ln(ln n))$. We need to check if the partial sums $A_N = sum_{n=2}^N cos(ln(ln n))$ are bounded.
4. Analyze Boundedness of Partial Sums:
The argument of the cosine, $ln(ln n)$, grows very slowly.
Consider intervals where $ln(ln n)$ is close to $2kpi$. For example, $ln(ln n) in [2kpi alpha, 2kpi + alpha]$.
The number of integers $n$ in the corresponding range is approximately $e^{e^{2kpi + alpha}} e^{e^{2kpi alpha}}$. This number grows extremely rapidly with $k$.
In such intervals, $cos(ln(ln n))$ is close to 1.
The sum of these terms over these intervals will be a large positive number, causing the partial sums $A_N$ to grow unboundedly.
5. Conclusion: Since the partial sums of $cos(ln(ln n))$ are unbounded, Dirichlet's Test for convergence is not met. The behavior suggests divergence. The slow decay of $frac{1}{ln n}$ is not sufficient to make the series converge when the oscillating part does not yield sufficient cancellation.
Hence, the series diverges.