可以,但也就是太阳系内大量建设居住区的程度,朝任何方向载人宇航都不可能,发射冯诺依曼探测器则不需要可控核聚变。
可控核聚变->电能->毫米波火箭,从地球表面起飞毫无问题,就是浪费大量能量。
可控核聚变不等于发电,没任何必要绑定在用电推进上。核聚变推进器是直接喷射聚变产物或加热工质喷出的。
可控核聚变电站远程供能毫米波火箭:
毫米波可以将空气电离产生爆轰推动航天器,航天器本身只需要极少的变轨燃料、紧急逃生燃料,大幅节约重量。也有不点空气而是让毫米波加热火箭上携带的工质(可以是水)的方案、让毫米波将火箭推到高层大气再用化学火箭发动机入轨的方案。用带聚光构造的被动吸气脉冲爆震发动机代替现存火箭发动机及其燃料可以节约80%的重量。
适合在地球大气中传播的毫米波是35GHz、94GHz、140GHz、220GHz。直径5米的现代毫米波天线可以在20千米内将波束直径控制在5米,直径120米的天线则可以在200千米内将波束直径控制在5米,持续照射火箭。电离层对100GHz程度的毫米波几乎没有反射,3波共鸣、热自聚焦之类非线性相互作用可以靠位相补偿来解决。
这是1980年代才出现的想法,晚于激光推进。但由于核聚变方面多年来的应用需求,人类对回旋管相关技术的掌握程度还好,现代回旋管单个输出可以达到2MW,单价数十万人民币,输出效率大于50%,数十座到数千座集束在原理上没有问题,使用5000小时才开始出现故障(一次发射只使用几百秒)。如果建成大规模基地,散热设备类似现代发电厂的水冷系统,储能可以靠飞轮,可以短时间连续进行航天发射(如一天10发)。
现阶段实验显示每个1MW回旋管每次发射可以送1~2千克物体上近地轨道。集中10000座,几天就能把百吨有效载荷打上近地轨道了。要是搞得到几十万座,一次把百吨有效载荷打上近地轨道也是可以的(此时储电飞轮的建设费跟回旋管同等。这种规模的毫米波发射系统非常吓人,因为这些设备是集发射弹道导弹与拦截导弹·飞机于一体的)。
未来的万吨级轨道太阳能发电系统可能用得上这样的发射系统。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 tinynews.org All Rights Reserved. 百科问答小站 版权所有