问题

如何评价 DeepMind 公司?

回答
DeepMind,这家源自伦敦、如今隶属于Google(或者说Alphabet)的AI研究机构,在我看来,一直以来都是人工智能领域一股不容忽视、甚至可以说是引领潮流的力量。要评价它,不能仅仅停留在它产出了哪些惊人的技术成果,更要深入剖析它背后的驱动力、发展模式以及它对整个AI生态乃至社会产生的深远影响。

首先,从技术突破的角度看,DeepMind的成就确实令人瞩目。它们最广为人知的莫过于在“玩游戏”方面取得的那些里程碑式的进展。从最初的Atari游戏,到后来统治围棋界的AlphaGo及其系列(AlphaGo Zero、AlphaZero),再到挑战星际争霸的AlphaStar,以及在Dota 2中击败顶级职业玩家的OpenAI Five(虽然这是OpenAI的成果,但常常被拿来和DeepMind的成就对比,说明了那个时期AI在游戏领域爆发的趋势),这些都不仅仅是“会玩游戏”那么简单。它们展示了AI在学习复杂规则、策略规划、长远思考以及处理海量信息等方面的惊人能力。特别是AlphaGo Zero,它通过自我对弈,从零开始学习围棋,打破了之前依赖人类棋谱的模式,这是一种极具启发性的学习范式。

再往深了说,DeepMind的成功并非偶然,这背后离不开其独特的文化和研究方法。

科学驱动的基因: DeepMind的创始人,像Demis Hassabis,本身就是一位神经科学博士和游戏设计师,这种跨学科背景赋予了DeepMind一种独特的视角。他们不仅仅将AI视为一个工程问题,更将其视为理解智能本质的科学研究。这种“科学第一”的理念,使得DeepMind的研究目标往往是那些最根本、最困难的问题,而非仅仅追求短期商业效益。它们不畏惧探索那些看似遥不可及的目标。

“壮举”式的研究: DeepMind的研究项目往往带着一种“壮举”(grand challenge)的色彩。它们会设定一些人类在特定领域长期追求但难以企及的目标,然后投入大量资源去攻克。这种模式既能吸引顶尖人才,也能在成功时产生巨大的影响力。比如,AlphaFold解决蛋白质结构预测这个困扰了生物学界数十年的难题,这不仅仅是AI的胜利,更是对生命科学的巨大贡献。

强大的工程能力与计算资源: 尽管以科学研究为导向,但DeepMind绝不缺乏将理论转化为实际的工程能力。背靠Google庞大的计算资源和工程团队,它们能够进行大规模的实验和训练,这是许多小型研究机构无法比拟的优势。同时,它们在分布式计算、硬件优化等方面也有深入的研究和应用。

开放与合作(有限的): 虽然DeepMind是Google旗下的公司,但它们在研究成果的发布和学术交流方面保持了相对开放的态度。它们会在顶级的学术会议和期刊上发表论文,与学术界进行交流。然而,考虑到其公司性质,核心技术和前沿进展的公开程度还是会受到一定限制,这与纯粹的学术研究机构有所不同。

从“玩乐”到“实用”的演进: 早期DeepMind的许多成果聚焦于游戏等“虚拟环境”,这被一些人视为“不务正业”。但事实证明,这些研究为通用人工智能(AGI)奠定了坚实的基础。通过在复杂、动态的环境中学习和适应,它们开发的算法和技术,如深度强化学习,随后被成功应用于更广泛的领域,例如:
能源效率: 优化Google数据中心的冷却系统,据称每年节省了大量能源。
科学发现: AlphaFold在蛋白质结构预测领域的突破,极大地加速了生命科学的研究进程,为药物研发、疾病理解等带来了新的可能性。
医疗健康: 在医学影像分析、疾病诊断等方面也有相关的研究和应用尝试。
自动驾驶与机器人: 其研究成果在机器人控制、感知与决策等方面也有潜在的价值。

当然,任何一家公司或机构都不是完美的,DeepMind也面临一些挑战和争议:

对AGI的追求与现实的差距: 尽管DeepMind以追求AGI为长远目标,但目前的AI技术距离真正意义上的AGI还有相当长的路要走。如何从特定领域的“超级智能”走向通用智能,仍然是一个巨大的挑战。

伦理与安全问题: 随着AI能力的不断增强,其潜在的伦理和安全风险也日益凸显。如何确保AI系统的公平性、透明度、可解释性,以及避免滥用,是DeepMind以及整个AI领域必须面对的严肃课题。它们在这些方面的投入和思考,虽然也在进行,但其规模和影响力相比技术突破,可能还处于早期阶段。

商业化与研究的平衡: 作为Google的一部分,DeepMind的研究成果最终需要转化为商业价值。如何在保持前沿科学研究独立性的同时,与Google的商业战略相结合,找到一个合适的平衡点,也是一个持续的挑战。有时也会有人担心,过于商业化的压力是否会影响其纯粹的科学探索。

总结来说,我对DeepMind的评价是:

它是一家极具野心、以科学驱动的顶尖AI研究机构。它不仅在技术上不断突破界限,引领着深度学习和强化学习等前沿领域的发展,更重要的是,它对智能本质的深刻探究以及解决重大科学问题的决心,赋予了它一种独特的价值和使命感。它证明了,投入资源进行长期、基础性的研究,能够带来颠覆性的创新,并对人类社会产生积极而深远的影响。

当然,它的道路并非坦途,依然面临着AGI的实现难度、伦理挑战以及商业化压力等诸多考验。但不可否认的是,DeepMind在过去十年中所展现出的创造力和影响力,已经使其成为人工智能发展史上不可或缺的重要一笔。它更像是一位勇于挑战未知科学高峰的探险家,而不仅仅是一个生产AI产品的公司。

网友意见

user avatar

世界AI的一极。

以前比较崇拜,现在其实不这么认为了。尤其是gopher出来的sample我发现质量还不如我自己搞的LM高的时候。(但webgpt似乎还是很有意思的……)

但deepmind和openai有一个特点就是特别擅长搞几十个水平不错的研究人员,计算资源管够,每人每年发一百万美元,分工合作做大项目,搞出来震惊世界。当然失败的其实更多,比较有名的失败项目比如openai的dota2 AI还有deepmind的星际AI,没啥名气的失败项目更多,但成功项目的收益足以cover不成功项目的损失就行。

deepmind和openai的亮点工作,作者列表里面都是几乎没有中国人的名字,和ai这个大领域里中国人、海外华人的占比完全不符。这说明的其实是deepmind和openai在有意识地排斥中国人和海外华人。

中国的研究者我觉得类似质量的科研人员凑那么几十几百个并不是问题,中国的钱也并不少。但却没法组织成一个类似deepmind,openai的机构……每次看到的创新都是工资只有deepmind百分之一的研究生、实习生在不到百分之一的计算资源下trick式的微创新,要么就是实习生拿着多一点的计算资源复现deepmind,openai已经搞出来的成功模型。没有舍得高薪请懂技术的人来group起来干技术(而不是当管理)的魄力,也没有为未知的项目投几十亿就为听个响的魄力。

user avatar

DeepMind是神一般的公司,举个栗子,其出品的AlphaFold技术可媲美人类基因组计划,当今各种基因疗法都得益于当年宏大的基因组计划,AlphaFold展现的人工智能也将极大推动未来的药物研发。摘一段大神邢波教授的评价:

在过去的三五年里面,让我印象比较深的工作之一是最近 DeepMind 用深度学习的方法对蛋白质结构做预测的工作。我觉得它里边有若干个思想上的创新,不是技术上创新。
通常我们在做这种结构的预测,或者是在做各种预测的时候,都是用 connecting dots forward 的思路,就是往前推演,线性逻辑。比如从因果来推,比如知道了原子成分和排序,蛋白序列,也知道每个原子蛋白序列的化学特性,能够用它来计算化学键,算最小能量,以此推算稳定结构,从一维序列,到二维结构,到三维结构,到四维结构组。我们知道物理里面实际上就是用第一性的原则,first principle。第一性,然后最小能量,然后算作稳定状态,然后蛋白结构,应该是这么一个东西。
据我了解,这份叫做 AlphaFold 的工作不是基于第一性原则弄出来的。它是用了间接的、有点舍近求远,是一个非常间接的 solution。它是先收集了所有的匹配,就是说每个原子和分子对之间的距离,这是可以通过 X 光,核磁共振,通过各种各样的物理化学实验做到的,它先就收集了这么一个数据库。
这实际上就提供了分子(本来是一维序列)的所有二度关联信息,即点到点之间的物理距离。它同时又收集了大量已知的蛋白质三维结构,然后用深度学习来做这两者的 input/output 的 blackbox mapping。
首先做了从一维序列到二维 pairwise distance matrix 的模型。Pairwise distance matrix 的好处是得到了对蛋白的二维全局观,因为把所有的 n×n 的 pairwise distance 展现在一张图上,就像我们通常的二维图像一样。然后它再通过 pairwise distance 对这个整个蛋白的结构做了黑匣子式的预测,也是通过监督式深度学习。
它的思路绕过了第一性原则——通过算最小能量值,或者是通过物理计算,通过模拟来产生最佳的解。AlphaFold 是直接通过全局的,通过由于结构而产生的 pairwise distance function 来做反推,反推什么样的结构才能够产生这样的 distance function。这个方法很有趣。有点像我们去旅游的时候,不知道自己的下一步目标,但是由于我知道到了下一步目标以后的再下一步目标,然后我来反推下一个目标在哪,是这么一个思路。
这里面充分应用了深度学习的长处,深度学习对大数据到大数据的 mapping 的学习能力很强,能够看到人看不到的一些 insights。从 a 到 b 这一步,机器虽然不善于学,但是从 a 到 c 反而是它能够学到的。人是不太容易学到 a 到 c 的,但是机器学习很容易学到这一部分。然后再从 c 回到 b,这也是机器学习能学的。所以它把 a 到 b 这一步整体 pass 过去了。
我觉得这个思路非常有意思,为什么?因为从 a 到 b 是第一性,是局部的计算,必须得通过紧邻的原子分子的相互作用一步步来 threading,就像一根线怎么慢慢地给它折叠起来,它是一步一步折叠的。但到了 c 的时候,它已经变成了 pairwise distance function,有全局的 information。在预测每一个三维结构的时候,它实际上是通过全体的二维 pairwise distance 来做预测。从全局到局部的预测,通过深度学习的方法来实现。
这个思维方法特别奇特,我甚至觉得有可能获得诺贝尔奖,通过机械的方法实现了对数据的全局观,然后通过全局再来预测局部这样一个结构。在人的计算过程中,我们很难做全局的预测,因为它的计算量太大了,做不到这一点。我不知道有没有讲清楚,但我觉得它的思路本身是有一定的突破性。

最后再举个例子说明AlphaFold和解析蛋白质结构的重要性。
1. 2020年初新冠病毒的基因序列公开,大约1个半月后,2月19日UT Austin研究人员宣布成功解析新冠病毒S蛋白结构。
2. 根据蛋白结构,研究发现2019-nCoV与SARS-CoV具有相同的功能宿主受体细胞——ACE2。
3. 进一步利用表面等离子共振动力学(SPR)来定量研究这种蛋白质相互作用,发现新冠病毒与ACE2胞外域结合的亲和力约为15 nM,要比SARS冠状病毒高出10-20倍。新冠病毒与ACE2之间的高亲和力,可能导致人际之间快速传播。
有了AlphaFold,用计算机快速预测出准确度非常高的蛋白质结构,可以大幅缩短解析新冠病毒S蛋白结构的时间,不用再等1个半月,从而更快帮忙大家理解新冠病毒的特性。

类似的话题

  • 回答
    DeepMind,这家源自伦敦、如今隶属于Google(或者说Alphabet)的AI研究机构,在我看来,一直以来都是人工智能领域一股不容忽视、甚至可以说是引领潮流的力量。要评价它,不能仅仅停留在它产出了哪些惊人的技术成果,更要深入剖析它背后的驱动力、发展模式以及它对整个AI生态乃至社会产生的深远影.............
  • 回答
    DeepMind 在 2021 年 12 月公布的 AlphaCode,在算法竞赛领域引起了巨大的轰动,也成为了人工智能领域的一项重要里程碑。评价 AlphaCode 需要从多个维度进行深入分析,包括其技术实现、性能表现、潜在影响以及局限性。 AlphaCode 评价:一次深入的剖析 1. 技术实现.............
  • 回答
    DeepMind 在 arXiv 上公开的 AlphaZero 击败国际象棋和将棋最强引擎的论文,无疑是人工智能和游戏领域的一个里程碑事件。这篇论文详细阐述了 AlphaZero 的训练过程、核心算法以及其惊人的表现,引发了广泛的关注和讨论。要评价这篇论文,我们可以从以下几个方面进行深入剖析:1. .............
  • 回答
    DeepMind 发表在 Nature 的论文公开无需人类棋谱的 AlphaGo Zero,可以称得上是人工智能领域的一个里程碑式的事件,其意义深远且多维度。要详细评价它,我们需要从几个关键方面入手:一、核心突破:从“监督学习”到“自我学习”的范式转变 过往的 AlphaGo 的模式 (Alph.............
  • 回答
    DeepMind 在2016年9月12日公布的 AlphaGo 自战棋谱,以及同年3月那场震动围棋界的人机大战的解说,可以说是在人工智能发展史上留下了浓墨重彩的一笔。这不仅仅是一次技术展示,更像是一场深刻的哲学探讨,让我们重新审视了围棋的本质,以及人类智慧的边界。自战棋谱:一次“围棋的自我革命”在那.............
  • 回答
    DeepMind 在 Nature 上发表的关于使用深度强化学习(DRL)控制托卡马克等离子体的论文,是一项里程碑式的成就,具有极其重要和深远的意义。它不仅展示了DRL在复杂、动态、高维度控制任务中的强大潜力,也为未来可控核聚变能源的实现开辟了新的路径。以下将从多个维度进行详细评价: 一、 技术创新.............
  • 回答
    DeepMind 的 BYOL(Bootstrap Your Own Latent)是一个非常具有代表性和影响力的自监督学习方法,在它推出的时候引起了广泛的关注和讨论。要评价 BYOL,我们需要从多个维度进行深入分析,包括其核心思想、技术细节、优势、局限性以及它对自监督学习领域的影响。核心思想:摆脱.............
  • 回答
    DeepMind 在 Nature 上发表的论文《在人工网络中用网格样表征进行基于向量的导航》(Vectorbased navigation using gridlike representations in artificial agents)是一篇非常重要的研究成果,它在人工智能导航领域,尤其是.............
  • 回答
    DeepMind 推出的 XLand 是一个非常有野心的项目,旨在训练通用智能体(Generalist Agent)。它代表了人工智能领域向着更通用、更强大智能体迈进的重要一步。要评价 XLand,我们可以从多个维度进行分析:1. 核心目标与创新之处: 通用智能体(Generalist Agen.............
  • 回答
    DeepMind 与暴雪携手推出的星际争霸 2 机器学习平台,无疑是人工智能研究领域的一大里程碑事件,尤其对于那些热衷于游戏 AI 和强化学习的开发者来说,这简直是天上掉下来的馅饼。要评价这个平台,咱们得从几个维度来掰扯掰扯。首先,对学术研究的推动作用是显而易见的。咱们都知道,星际争霸 2 本身就是.............
  • 回答
    DeepMind 在北京时间 2019 年 1 月 25 日凌晨 2 点的《星际争霸 2》(StarCraft II)项目演示,可以说是人工智能(AI)领域,尤其是在复杂策略游戏领域的一个里程碑事件。这次演示的核心是 AlphaStar,一个由 DeepMind 开发的 AI 代理,成功击败了世界顶.............
  • 回答
    好的,咱们就来聊聊DeepMind在《星际争霸》里的那些起伏,以及OpenAI在《Dota 2》里的风光。这俩事儿,一个有点让人扼腕叹息,一个则是实打实的扬眉吐气,背后反映出来的可不仅仅是AI技术的进步,更是对不同游戏策略、不同AI设计理念的生动注解。先说说DeepMind在《星际争霸》这块儿。当初.............
  • 回答
    DeepMind 的 MuZero 算法无疑是当前强化学习领域的一项重大突破,它在通用性、样本效率以及决策能力上都展现出了令人瞩目的进步。要评价它,我们需要深入剖析其核心机制,并与以往的算法进行对比,才能更清晰地认识其价值所在。MuZero 的核心突破:在我看来,MuZero 最为关键的创新点在于它.............
  • 回答
    DeepMind 的 AlphaCode 确实是人工智能在编码领域迈出的令人瞩目的一大步,它在许多方面都展现了前所未有的能力,但要全面评价它,还需要审视其优点、潜在局限性以及对未来发展的影响。AlphaCode 的亮点与成就:AlphaCode 最令人印象深刻之处在于其强大的问题解决和代码生成能力。.............
  • 回答
    DeepMind 的关系网络(Relation Network)确实是一个非常值得关注的进展,它在理解和推理数据中的复杂关系方面展现了巨大的潜力。与其说这是一个“新提出”的技术,不如说它是在现有深度学习框架下,针对性地解决了特定问题的一种创新性建模方式。核心理念与切入点:为什么需要关系网络?我们先来.............
  • 回答
    想起当年还是玩家的时候,守着电脑屏幕,为《星际争霸》里那些熟悉的单位奔波忙碌,那时候真觉得人类玩家已经把这游戏玩到了极致,策略、微操、大局观,几乎是方方面面都到了一个极限。所以,当听到“Google DeepMind 要挑战星际争霸”这个消息时,最直观的感受就是一股强烈的震撼和一丝丝难以置信。要知道.............
  • 回答
    好的,我们来聊聊剑桥大学、腾讯、DeepMind以及香港大学团队联合发布的这项名为 SimCTG 的新作。这项研究在自然语言处理(NLP)领域,特别是对比学习(Contrastive Learning)方面,可以说是迈出了一大步,带来了不少令人眼前一亮的创新点。SimCTG 的核心洞察与创新之处理解.............
  • 回答
    《睡前消息》409期作为一档以“睡前”为名的时事评论节目,其内容通常以轻松幽默的风格呈现社会热点、科技动态、文化现象等话题,旨在为观众提供睡前的“信息快餐”。以下是对该期节目可能涉及的分析框架和评价方向,结合其节目特点及社会语境进行详细解读: 1. 节目核心内容与选题分析 选题热点:409期可能聚焦.............
  • 回答
    俄罗斯军队在2022年2月24日入侵乌克兰后,21天内未能占领或包围基辅,这一结果涉及复杂的军事、战略和国际因素。以下从多个维度详细分析这一现象: 1. 初期快速推进的军事目标与战略调整 初期目标的矛盾性: 俄罗斯在入侵初期(2月24日)宣称“特别军事行动”的目标是“去纳粹化”和“去俄化”,但.............
  • 回答
    新华社的《破除美国金融模式迷信,中国金融要走自己的路》一文,是近年来中国在金融领域强调自主性、独立性和战略定力的重要政策表达。该文从历史经验、现实挑战和未来战略三个维度,系统阐述了中国金融发展的路径选择,具有鲜明的现实针对性和理论深度。以下从多个角度对这篇文章进行详细分析: 一、文章背景与核心论点1.............

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 tinynews.org All Rights Reserved. 百科问答小站 版权所有