百科问答小站 logo
百科问答小站 font logo



样本数据达到多少统计指标才有意义? 第1页

  

user avatar   edwin_hao_qing_han 网友的相关建议: 
      

这是个很好的问题,事实上从开始学回归的时候这个问题就会出现在实际操作中。当有两个点的时候,因为两点确立一直线,所以完美拟合, 为1。

同理也可以外推到如果有n个参数,又正好有n个观测值得话,如果变量之间线性不相关,那么回归出的超平面正好穿过所有的点,这个时候 仍然是1。

这是因为 代表的是模型拟合度,所以自然而然是越简单的模型(变量越少)越难拟合,数据越少的回归拟合度可能反而较高。

为什么越简单的模型越难拟合呢,考虑两个模型:

我们很容易看到模型1是嵌套在模型2之中的,当加入额外的回归项 之后,模型2的至少不低于模型1的。

而为什么数据越少的回归拟合度可能反而越高,这是因为数据越多你控制不到的变量就越多,控制不到的变量代表着数据中未观察到的异质性(unobserved heterogeneity),异质性的存在也会降低模型的拟合度。

那么数据是不是越少越好呢?当然不是,相反数据是越多越好,因为只有数据多了,你才可以构造更多的控制变量。最简单的例子:

如果只有一个观测值,那么你只能估计这样的模型 ,这个时候 是1。

当你有两个观测值的时候,你可以估计一个简单线性模型 ,这个时候 仍然是1,因为当你多了一个观测值的时候,你的数据中就包含了额外的信息,这样的信息可以帮助你识别截距。

当你有三个观测值的时候,那么你可以将模型拓展到非线性的情况下 ,这个时候如果 不是为1的常数或者 二元变量的话,回归存在唯一解并且 为1。

所以所谓的样本量越小统计指标越没有意义只是对于 理解上的偏误,从统计角度上来说样本数据当然是越大越好,就好像做菜一样,材料越多越容易做出好的菜肴。只是有些厨师可能选择太多了反而不知道怎么选,材料多了可能反而没办法发挥正常的厨艺。大样本的好处这里不说很多,只说一点,我们通常知道线性回归的系数方差是:

方差意味着估计带来的不确定性,这意味着当样本数量很大的时候,我们几乎可以百分百确定我们的估计到的系数就是真实的系数值。而当只有两个变量的时候因为 的无偏估计是:

如果我们有 的时候, ,这个时候 ,估计没有任何意义。




  

相关话题

  如何对R中每一行数据求和? 
  专业的数学家只擅长证明不擅长使用数学吗? 
  计算统计学(Computational Statistics)有什么好的资源和教材以及学习方法推荐? 
  相关性分析和回归分析要具有一致性吗? 
  如何理解主成分分析中的协方差矩阵的特征值的几何含义? 
  一个数从1开始,每次各有50%的概率乘0.9或者乘1.1,重复足够多的次数以后,情况会如何? 
  茎叶图的中位数怎么读? 
  600 个人站一排,每次随机杀掉一个奇数位的人,几号最安全? 
  中国寿命中位数是多少? 
  Kaggle如何入门? 

前一个讨论
如何评价「长平之战」?
下一个讨论
世界足坛历史上有哪些横空出世又迅速陨落的流星?





© 2024-12-25 - tinynew.org. All Rights Reserved.
© 2024-12-25 - tinynew.org. 保留所有权利