DNA分子显微镜这项技术原理和2009年开发出来的染色质构象捕获技术Chromatin Comformation capture(3C)差不多。它从看染色质结构角度衍伸到看全细胞结构,从DNA转变成RNA,从概念上有了新提升。
首先讲下3C技术原理,可以帮助更好地理解DNA显微镜。
细胞核内DNA分子如果全部展开,有2米多长。只有经过有规律地折叠,才能被装入微米级别的细胞核中。这些DNA折叠有松有紧,松的构成常染色质,转录活跃;紧的构成异染色质,转录减少。两类染色体动态变化和基因表达紧密相关,因此,染色质结构变化是研究基因转录调控的重要科学问题。为了了解染色质构象变化,2009年开发了3C技术。
3C,染色质构象捕捉,就是把细胞核内的线团原地剪碎,拿序列1-特定序列-序列2作为引物进行一轮原位PCR扩增。如果两个DNA片段(片段1和片段2)在线团里位置很近,有很高概率被扩增到同一个PCR产物中。由此大规模给引物扩增,就能知道染色体中DNA谁和谁位置更近,得到整个染色体构象。
下面再讲讲这次的新技术DNA显微镜。
其实……它是个RNA显微镜。
在细胞中有很多RNA,处于不同位置。之前用于探测RNA在细胞内分布的技术,叫作原位杂交。把细胞固定好,用和目标RNA结合的探针标记上去,利用探针上的荧光观察RNA在细胞内的位置。
而这次DNA显微镜技术,和3C差不多。先将细胞固定,原位把RNA反转录成cDNA,加特定序列扩增,cDNA上就被加上标签。不同标签在扩增时,通过引物重叠区域,把距离近的两个cDNA扩增到一起,由此知道这两个cDNA空间距离很近。最终通过测序可以得到全部目标cDNA(即RNA)在细胞的分布。
由于新技术基于PCR扩增,PCR扩增效率受引物序列和模板浓度影响,实验起来比较tricky,技术还是需要很多优化。
总体来说是很棒的概念,卖点DNA microsope给得非常好。