2022年4月14日更新:远程参加了线下位于清华的研讨会,问了这个很大的修正的第一性原理的解释。Duke大学的Ashutosh回答说这个修正已经存了20年了,没有人怀疑过它的正确性。CDF没有对它的第一性原理的解释,但是结果应该是正确的。
实验测到的W玻色子质量比标注模型高7 sigma。我就从数据分析的角度简单讨论一下结果。
这篇文章是CDF实验基于2002年-2011年间数据对W玻色子质量的测量。测量结果和标准模型的预言不相容。「该不相容是统计涨落造成的」的概率小于7 sigma,或者说地球从诞生至今会发生四次,因此可以排除该假设。如果这不是分析的问题造成的,那么这意味着我们需要扩充标准模型,意味着有新的物理。
我过去的工作主要是实验数据分析,那么我就从实验数据分析的角度讨论一下这个分析。作为重点内容,我将这部分内容提前。在后半部分介绍实验的背景。
这个分析要测的是W玻色子的质量,它和分布的峰的位置相关。一般来说,对峰的位置的测量的分析要比对流强、事例率、或者散射截面的测量要更干净一些。本底模型做的不好,对结果的影响要更小一些。当然,这个分析的结果的精度太高了,~千分之一,因此本底形状的的影响也不一定小。作者在表2中总结了系统误差来源。
直观的来说,对结果影响最大的就是能标的准确性(即量能器对产物能量的测量的准确性)。在这个分析中,作者用J/psi粒子的能量刻度了探测器能标。通过刻度发现探测器的能标偏低,低了-0.1393±0.0026%,见图2。
探测器的能标的精度可能会随能量变化。这就好比一把不均匀的尺子在10cm处短了1%,可能在20cm处短2%。J/psi粒子的能量约3 GeV,W玻色子的能量约80 GeV。3 GeV初我们修正了千分之一级别的偏差(bias)之后,剩余的偏差(bias)在十万分之二的量级。
我们不能简单的假设在80 GeV处修正后的偏差(bias)还是十万分之一。万一和尺子一样变形是不均匀的怎么办?作者想的办法是用Z玻色子来估计系统误差。Z玻色子的质量约90 GeV。作者发现修正后Z玻色子的质量的测量结果和理论预言值相差约十万分之五。还是拿尺子打比方。如果尺子的形变程度是均匀的增大的,那么在80 GeV处能表的精度也应该是十万分之四左右的量级,这就和作者估计的系统误差[1]一致了。
但是这有一个问题:这个修正太!大!了!它的幅度是精度的100倍。最理想的情况下,我们通过修改重建和模拟算法,从源头上消灭这个偏差(bias),但这非常困难。这种在事后做的修正都是不好的analysis smell,是emprical model,但是也是无奈之举。既然有不好的smell,我们就要问,为什么没有从源头上直接修改重建/模拟算法消灭掉这个偏差?
虽然有这些问题,但是由于没有办法将重建和模拟的精度调节到十万分之四的精度,再加上对Z玻色子的质量的测量精度极高,我们可以选择相信这个empirical correction should work。
此外,再对比一下ATLAS的结果:
注意到CDF这次结果的统计误差是6.4 MeV,而ATLAS这篇文章的统计误差是7 MeV,因此ATLAS这篇文章的统计量和CDF的是类似的。而ATLAS的系统误差要大得多,主要多了“模型误差”,或者不同的产生子导致的PDF形状的差别引起的结果的差别。
由于ATLAS的结果受限于系统误差,取更多的数不能缩小最终的误差,因此要想检验CDF的结果,取更多的数是不行了,需要想别的办法。
最后,结果能被发表在Science上,那么它肯定是被审稿人认可的。所以大家也不用太担心结果的正确性。分析本身也不是一件简单的工作,将来也会有更多的实验来证实或者证伪这个结果。
下面是背景介绍部分。
CDF是一个位于兆电子伏特加速器(Tevatron)上的谱仪、或者复合粒子探测器[2]。我们对撞了正反质子,收集了对撞产物的能量、动量的分布。利用分布的峰值计算了W玻色子的质量。
Tevatron是美国费米国家实验室的对撞机[3]。费米国家实验室位于伊利诺伊州的巴塔利亚Batavia, Illinois,如下图所示,在芝加哥湖、芝加哥的西南城郊。
Tevatron对撞机从1968年12月开始动工,于1970年12月开始对撞。在2011年左右,同类型的欧洲大型强子对撞机(LHC)[4]的亮度是Tevatron对撞机的十倍,且能量也是Tevatron的~3.6倍,费米国家实验室在2011年9月30日关闭了Tevatron。Tevatron最著名的成果包括发现了顶夸克。对撞机将正反质子加速,加速后的正反质子分别在圆环形真空轨道内顺时针和逆时针运动,在对撞点处受磁场控制偏向后对撞。实物图和示意图分别如下:
Collider Detector at Fermilab(CDF)是一个位于Tevatron上的谱仪[5]。谱仪像洋葱一样分成很多层,每层的职责不一样。正负质子在对撞后会变成新的粒子再飞出产生一条条径迹。谱仪内不同的层可以测量不同类型的例子的动量和能量。部分层则被用来鉴别粒子种类。CDF的实物图和示意图分别如下。
见文章中的图4。在清洗了数据之后,我们收集了电子道和谬子道的末态产物的能动量分布,共6个分布。
他们都可以被用来测量W玻色子的质量。测量结果见下表。其中第一列是分布的名称,第二列是用该行所对应的分布测量的W玻色子的质量,第三列是模型和数据的吻合程度,越小越好。
CDF测量了W玻色子的质量,为80.4335±0.0094 GeV。这和当前标注模型的预言值80.357±0.006 GeV不相容。这种差别完全是随机涨落造成的概率小于7 sigma,即地球从诞生至今平均会发生四次,因此我们认为这种不相容不是统计涨落造成的,他们真的不同。
事实上,在这次实验之前理论和实验结果就已经有一定的tension了,不过是2 sigma级别[6],有可能只是统计涨落造成的。在[6]中,作者将标准模型扩充到最小R对称的超对称标准模型(Minimal R-symmetric Supersymmetric Standard Model,MRSSM),那么W玻色子的质量就应该更大。
考虑CDF给出的W玻色子的质量为80.4335±0.0094 GeV,那么在MRSSM模型下超对称粒子的质量约为1 TeV。
这里只简要的介绍一下。
众所周知,我们要先写一个Lagrangian。这个Lagrangian应该满足各种各样的对称性,因为物理规律和人类如何研究它、如何选取坐标系、Gauge无关。
为了满足洛伦兹不变形,Lagrangian应该写成逆变-协变张量。为了满足轻子数守恒等,微分算子应该换成包含媒介子的“超级微分算子”:
然后引入满足对称性的Higgs 标量场
Higgs粒子会滑到能量最低处
将这两个式子带入满足对称的Lagrangian,对称性就自发的被破坏了,产生了质量项
这样W玻色子就有质量了。
经提醒提醒这里也不一定需要新模型,参考 @二甲氨基苯甲醛 的答案
我仿佛看到物理学的天边飘过来一朵乌云,
不知哪位天降猛人可以让这朵乌云消散。
这或许是十年来最重要的粒子物理进展!
2012年,欧洲核子中心的LHC的两个合作组(ATLAS和CMS)宣布发现了希格斯粒子[1],从此,粒子物理标准模型预言的最后一个粒子被发现。在过去的十年中,探索超出标准模型的物理显然已经成为前沿物理的最重要的一部分。
而此次,则是美国费米国家实验室的CDF合作组(The Collider Detector at Fermilab),对于标准模型中的基本粒子——W玻色子——的质量做了最为精确的测量,结果表明,实验结果与理论预测有明显的差距[2]:
图中一共展示了九个测量W玻色子质量的实验,红色的点为测量结果,穿过点的红线代表着误差范围,其中最底下一行红色的就是此次的结果。灰色的竖线是标准模型在理论中预测的质量。
可以看到,此次实验的结果误差非常非常小,远远小于过去的测量结果。最重要的是,此次的测量结果与理论预测的结果有明显的偏离!此次的测量置信度在7个 ,一般达到5个就能成为发现了!
实验的结果:
理论的预测:
(其中 是高能物理常用的单位,为了比较,电子的质量为 ,而质子的质量为 )
可以看到,实验与理论的偏差已经很大了!
本节说说什么是W玻色子以及相关的希格斯粒子、希格斯机制等。
我们比较熟悉电磁相互作用,任何带有电荷的粒子(比如电子、质子)等之间会存在电磁吸引或者排斥力,而且这些粒子的(加速)运动会辐射电磁波,也就是光子。根据现代的电磁理论,也就是量子电动力学,光子是电磁相互作用的媒介粒子,电子、质子等之间的电磁力是通过交换光子实现的。
与此相似,在弱互作用中也会出现媒介粒子,但是与电磁相互作用又有不同:
其中第3点最有意思。最开始,杨振宁和Mills尝试把电磁相互作用中的思想,也就是规范场思想,推广到弱相互作用中(经评论区知友指正,此处有错误,实际上,最开始杨振宁和Mills是想推广到强核力中,从现在的眼光看,就是强相互作用中),也就是大家熟知的杨米尔斯理论,但是遇到了一个解决不了的问题:
理论中的媒介粒子(也就是规范玻色子),应该是完全没有质量的,比如光子就是这样的,但是弱相互作用的三个媒介粒子具有质量,而且还是很大的质量!这也是弱相互作用的距离非常小的原因。
曾经杨振宁作报告讲了这个理论,而听众中就有泡利,然后泡利批评了杨振宁的这个想法[3]。也正是因为质量问题,最开始的时候大家并没有重视杨米尔斯理论。
一直到了20世纪60年代,首先对称性自发破缺被引入到了粒子物理中,然后希格斯提出了希格斯机制(其实一共有三个组分别独立地提出了这一机制),后来温伯格等人把这一机制应用到电弱相互作用中。
希格斯机制在理论中引入了希格斯场,希格斯场与其它场有相互作用,通过对称性自发破缺这种机制,使得费米子(除了中微子)、 以及 玻色子以及希格斯粒子自己都获得了质量。话句话说,我们可以认为希格斯场赋予了玻色子质量。
具体可以参考我的这个回答:
去年,费米实验室的另一个结果也引起整个物理学界的沸腾:
也是因为实验结果与标准模型理论预测有差别(不过还没有得到5个 )。对于理论中的这种“错误”,为什么大家如此兴奋呢?
因为这意味着超出标准模型的新物理!
自从十年前希格斯粒子被发现后,标准模型的框架可以说已经搭建完成了,而且也取得了非常辉煌的成就。那么下一步该怎么发展呢?
正所谓成也萧何败萧何,标准模型虽然取得了很大的成功,但是还有很多事情解释不了:
再往大了说,要想统一四种相互作用,对标准模型的扩充是一定的!但是任何理论上的发展,都需要实验作为指导。原则上来说,理论只需要做到逻辑自洽就可以,不同的理论得到的结果可以千差万别,甚至在有的领域,可以说人手一个理论( 模型)。
那么这么多的理论,到底哪一种才是我们的宇宙所遵循的规律的呢?(当然也可能每一种都不是)。这就需要实验!否则理论就像无头苍蝇一样,不知道该如何发展。
比如,大家耳熟能详的几种理论:
本次 玻色子的质量与理论预言不一致,不负责任地猜测,原因很有可能是希格斯粒子,我们对希格斯粒子的性质还不够理解。
我自己不是做新物理方向的,具体的理论不太清楚。但是,目前对于新物理理论方向的探索可以说非常多,但是最终还是需要实验结果给定下来。
最后还是说一点精确测量的事情。此次是CDF的结果,但是这个探测器在2011年就已经关闭了[4],现在的结果是CDF的科学家在这十年中从十年前的测量数据中挖掘出的!而为了达到非常高的测量精度,往往需要多年持续地收集数据!
探索新的物理,不仅仅是发现全新的物理现象,实际上,精确测量已知的物理量也是非常重要的一环。去年的 子反常磁矩的测量结果,以及现在的 玻色子质量的测量结果,都是这样的。而纵观物理学发展史,就发现物理学中有不少重大发现都是源于精度的提高!或者说,源于理论与实验的不同!
对天体的精确观测能让我们获得更多的信息,比如冥王星在1930年就被发现了,下图分别拍摄于1994年和2015年,意义不言而喻!
实际上,当下和未来也有许多量需要进一步的精确测量:
(上图[6])
突然感觉,站在这样一个时间点上,我们或许正在见证历史。
一方面,过去百年慢慢积累、发展并完善的标准模型正在得到进一步验证和巩固,另一方面,超出标准模型的新物理也在慢慢被发现,虽然目前还没有得到全面地确认,但毕竟这就是历史的进程,我们或许就身处变革之中,我们正在一步步发现全新的宇宙。
毕竟,我们所熟知的物质,只占了宇宙总质能的5%啊!
革命尚未成功,同志仍需努力!
(随手写的完全没想到这么多人看,说明还有好多人对对撞机物理感兴趣,哈哈。我是做实验的,主要从实验的角度说说。理论上怎么引申我就不胡诹了。)
首先肯定要祝贺cdf,从他们上一次mW测量 (2012年) 到现在已经正好10年了,真"十年磨一剑",跟上次的结果比起来,所有的误差基本都降到了一半,绝对的“伟大成就”。
看到有讨论说为什么需要10年时间,核心原因就是精度要求决定的。把mW测到1%水平非常简单,可能一个一年级的博士生几天就能做完了;但要把它测到0.01%水平,就非常非常难了。大概类似于一个学生从20分考到60分很简单;但从95分考到100分就非常难。这个精度要求分析的所有环节都要极其准确,一丁点的不同或者不理解都不允许,不然误差传播下去影响就很大。信号生成,探测器的各种效应,对应的模拟,重建,和各种修正,要求参与的PI,博后,和博士生对每个环节都要有很深刻的理解,技术上要非常非常熟练才行。感情上说,参与这个分析的基本都是伟大的理想主义者,基本都要冒着O(5年)没有任何论文产出的风险做这个很难的分析,真的是"有追求"的人,伟大的实验工作者。比如这个分析的领导人基本上是这一辈子很多精力就关注在在mW上了。往大了说,他的名字也会和mW绑在一起成为历史的一部分了。
但是,具体到这个分析和结果上,我个人最大的担心就是,cdf最新的8.8fb-1的结果跟他们自己2012年的2.2fb-1的结果https://arxiv.org/abs/1203.0275都对不上,不知道他们自己有没有合理的令人信服的解释。他们在最新的文章附属材料里说有一个beamspot的限制和新的pdf set,这两个能解释13.5MeV的差别。但这个我觉得远远还不够,跟cdf自己两个测量的46个MeV的区别还差了好多。如果我来审这篇文章的话,两个特别有用的study:
1. 用现在的model和方法把2.2fb-1的数据分析一遍
2. 用之前的model和方法把8.8fb-1的数据分析一遍
这两个study做完会清晰很多——究竟什么因素导致了什么结果。我理解他们可能人手不够,第二个需要的东西特别多。但做一下第一个应该是不费什么事的,假定所有的correction都不是era dependent的话,直接在2.2fb-1的数据上跑一下fit就行了,很简单,但非常非常有用。很奇怪Science的审稿居然没有要求这些结果。
周五的seminar说实话有一点失望,把seminar开成了g-2的时候的发布会一样,基本就是论文里的结果讲了一遍。没什么新东西,也没有深入的讨论,想要的检查和比较的结果基本都没有。没有这些我不知道应该多严肃地对待他们的结果。(有的人说这是science的paper,不用担心正确性。这个我不同意。历史上发表出来的东西也有很多是有问题的,都很正常。有问题就是有问题,就事论事就好。)
不过我老板的一个观点是atlas和tevatron之前的测量都是theory unc主导的,基本就是pdf unc + W pt modeling。跟实验误差比起来,好多theory unc都不是gaussian的,定义和算法也有点奇怪,如果baseline model改了,结果跳到了另外一边,也不是那么罕见。昨天seminar的时候cdf的spokesperson的一个回答,大概也是这个意思,因为theory model不一样,所以大家的结果"可能都是对的"。
这个的确是非常有可能的,但我还是坚持自己的想法,必须要直接的检查验证来佐证。跟其他的实验结果对不上完全没问题,每个人都能理解;但跟自己的结果差了这么多,这个我觉得是必须要理解的。实事求是的态度,有了检查的结果之后才能自信的说,"就是theory modeling或者某个具体的问题,下面我们讨论讨论怎么办吧"。说实话我认为现在的结果有一点点sloppy,不过也可能是基于现阶段他们所有有的精力,人力,和条件能做到的极限了,哎。。(有点不负责任的想法:我个人觉得他们私下一定做了一部分检查,因为基本不费什么事,但somehow他们决定没把结果放出来。。。)
然后题主具体的问题
垂死病中惊坐起,还能发现新物理(
早晨五点钟本来打算睡了,然后看到了这个消息。点开论文给我吓一跳,置信度7个σ!!!!!!!!!!这意味着测量结果是统计误差的概率不到亿分之一!给我激动的马上来知乎提了这个问题,想看看大佬们如何看待这个结果。在大佬来之前,我先抛砖引玉,向点进问题的各位介绍一下相关的知识背景。
大家可能知道,我们这个宇宙中目前发现了四种基本相互作用:引力、电磁力、强相互作用、弱相互作用。前两种是长程力,大家都很熟悉。后两种是原子核尺度以下才会存在短程力。强相互作用使得作为基本粒子的夸克可以结合形成质子、中子等复合粒子,而弱相互作用则是导致原子核β衰变的原因。
研究表明,每种电磁、强、弱这三种相互作用都是由某种粒子传递的,它们被称为规范玻色子。传递电磁相互作用的是光子,传递强相互作用的是胶子,而传递弱相互作用的则是W玻色子和Z玻色子。这项研究针对的就是这个传递弱相互作用的W玻色子。这种粒子的质量大约是质子or中子质量的80多倍,带+1或-1的电荷,平均寿命约为 秒。
统计了Tevatron对撞机实验中的数据,发现W玻色子的实际质量比标准模型的理论预言要大一些。如下图所示,图中标记为SM的灰色竖线是标准模型预言的W玻色子的质量, . 前8个数据是先前的实验对W玻色子质量的测量结果,第9个标红的数据是本次实验的测量结果。可以看到,本次实验是精度最高的实验,而且测量值与标准模型的预言有明显偏离,大约是 . 与标准模型的偏离高达7个σ!(在粒子物理中,达到5个σ的实验结果就可以被称为是新发现)
你也许会问,只不过是稍微大了一点,有啥影响吗?可以这么说,标准模型这个理论牵一发而动全身。W玻色子质量这里有问题,意味着别的地方也很可能会有问题,尤其是希格斯机制。
在标准模型当中,W玻色子的质量是希格斯机制给的。希格斯机制让SU(2)×U(1)的电弱对称性自发破缺,产生Goldstone玻色子,然后W玻色子吸收了Goldstone作为自己的纵模,由此获得了质量。W玻色子的质量大于标准模型的预言,可能说明希格斯机制有问题,在这方面存在未知的新物理。也可能说明有其他的物理机制或者说未知的新粒子对W玻色子的质量有贡献,比如说超对称。文章里也有一幅图提到W玻色子的实际质量中可能有超对称的贡献。
不过,即使再激动,也还是要等LHC对撞机确认这个结果。从第一幅图我们也可以看到之前LHC上的ATLAS实验对W玻色子质量的测量结果是支持标准模型的,虽然它的精度比本次实验低一些。总之,希望这个实验结果被最终确认为真,这会是一个载入史册的进展。
好困,我先睡了,睡醒再看看还有没有什么可以补充的。好久之前写过一篇有关强相互作用和弱相互作用的科普,感兴趣的话大家可以看看:
为什么你们的实验结果差这么多呢?以前看到的实验结果都是概率峰值基本一致,误差区间限得越来越窄,这个是什么?看了一下理论和实验确定W玻色子质量的方法,都比较间接,误差算准了吗?
假设没问题。那既然其它那么多实验都足够支持SM,新物理就最可能在W玻色子质量最敏感的地方:Higgs机制。Higgs机制可能没有SM里那么干净简单,Higgs玻色子可能没有那么基本。不过只是知道W玻色子质量也没法为具体的非SM Higgs模型提供坚实证据。hep-ph的又一春太夸张了。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 tinynews.org All Rights Reserved. 百科问答小站 版权所有