问题

如何学习递归呢?

回答
Recursion, at its core, is a powerful programming concept that allows you to solve problems by breaking them down into smaller, identical subproblems. Instead of using loops, you define a function that calls itself. While it might sound a bit mindbending at first, with a systematic approach and plenty of practice, you'll find it to be an incredibly elegant and efficient way to tackle many coding challenges.

Let's dive in, and I'll try to explain it as clearly as possible, as if we were sitting down together to figure this out.

The Core Idea: Breaking Down the Problem

Imagine you have a really big task to do. Recursion is like saying, "Okay, this task is too big to do all at once. But, if I can figure out how to do a slightly smaller version of the same task, I can keep doing that until the task is so small I can handle it easily. Then, I'll just put all those small solutions back together."

Think about it like stacking Russian nesting dolls. To open the whole set, you open the biggest doll. Inside, there's a smaller doll. You repeat the same action: open the smaller doll. You keep going until you find the tiniest doll that can't be opened further. That's your "base case." Once you have that smallest doll, you can then close them all up, one by one, in reverse order.

The Two Essential Ingredients of Recursion

Every recursive function needs two key components to work correctly and avoid infinite loops:

1. The Base Case (or Stopping Condition): This is the simplest possible version of the problem, the one that can be solved directly without making another recursive call. It's the "tiny nesting doll" that doesn't open. Without a base case, your function would keep calling itself forever, leading to a "stack overflow" error (think of it as your computer getting overwhelmed with too many nested instructions).

2. The Recursive Step (or Recursive Call): This is where the magic happens. The function calls itself but with a modified input that moves it closer to the base case. It's breaking the problem down into a smaller, identical subproblem. You're essentially saying, "To solve this problem, I need to solve a slightly simpler version of it first."

A Classic Example: Calculating Factorial

Let's use a really common example to illustrate this: calculating the factorial of a nonnegative integer. The factorial of a number `n`, denoted as `n!`, is the product of all positive integers less than or equal to `n`.

`5! = 5 4 3 2 1 = 120`
`3! = 3 2 1 = 6`
`1! = 1`
By convention, `0! = 1`

Now, let's think about how we could define factorial recursively.

What's the base case? The simplest factorial we know is `0!` or `1!`, which is just `1`. So, if the input `n` is `0` or `1`, we can immediately return `1`.

What's the recursive step? How can we express `n!` in terms of a smaller factorial?
We know `5! = 5 4 3 2 1`.
Notice that `4 3 2 1` is just `4!`.
So, `5! = 5 4!`.
In general, `n! = n (n1)!` for `n > 0`.

This `n! = n (n1)!` is our recursive step. We're defining `n!` in terms of `(n1)!`, which is a smaller version of the same problem.

Here's how you might write this in Python (it's quite similar in many other languages):

```python
def factorial(n):
1. The Base Case: When to stop?
if n == 0 or n == 1:
return 1
2. The Recursive Step: Break down the problem
else:
return n factorial(n 1)

Let's test it
print(factorial(5)) Output: 120
print(factorial(0)) Output: 1
print(factorial(3)) Output: 6
```

Let's trace `factorial(4)`:

1. `factorial(4)` is called. `n` is 4.
2. Is `n == 0` or `n == 1`? No (4 is not 0 or 1).
3. So, it goes to the `else` block: `return 4 factorial(3)`.
Now, `factorial(3)` needs to be calculated.
4. `factorial(3)` is called. `n` is 3.
5. Is `n == 0` or `n == 1`? No.
6. So, it goes to the `else` block: `return 3 factorial(2)`.
Now, `factorial(2)` needs to be calculated.
7. `factorial(2)` is called. `n` is 2.
8. Is `n == 0` or `n == 1`? No.
9. So, it goes to the `else` block: `return 2 factorial(1)`.
Now, `factorial(1)` needs to be calculated.
10. `factorial(1)` is called. `n` is 1.
11. Base Case Hit! Is `n == 0` or `n == 1`? Yes!
12. `factorial(1)` returns `1`.
13. Back to `factorial(2)`: it was waiting for `factorial(1)`. Now it can complete: `return 2 1`, which is `2`.
14. Back to `factorial(3)`: it was waiting for `factorial(2)`. Now it can complete: `return 3 2`, which is `6`.
15. Back to `factorial(4)`: it was waiting for `factorial(3)`. Now it can complete: `return 4 6`, which is `24`.

And that's how `factorial(4)` returns `24`. See how the problem gets broken down and then the results are combined on the way back up?

How to Approach Learning Recursion

1. Understand the Two Pillars: Always, always, always identify your base case and your recursive step. If you miss one, you're in trouble.

2. Trace, Trace, Trace! This is crucial. When you write a recursive function, or look at an example, don't just read it. Mentally (or on paper) trace how the function calls itself with different inputs until it hits the base case, and then how the results propagate back. Use a debugger if it helps!

3. Start Simple: Tackle wellknown recursive problems first. Factorial is great. Others include:
Sum of numbers: `sum(n) = n + sum(n1)` with base case `sum(0) = 0`.
Fibonacci sequence: `fib(n) = fib(n1) + fib(n2)` with base cases `fib(0)=0` and `fib(1)=1`. (Be careful, the naive recursive Fibonacci is very inefficient due to repeated calculations, but it's a good conceptual example.)
Traversing treelike structures: This is where recursion truly shines. Think about how to process a file system (each folder can contain files and other folders), or how to search through a binary tree.

4. Visualize the Call Stack: Imagine each function call being placed on a stack. When a function calls itself, a new "frame" is pushed onto the stack. When a function returns, its frame is popped off. The base case is when you start popping off frames. This mental model helps understand the flow.

5. Compare with Iteration: For many problems that can be solved recursively, there's an iterative (loopbased) solution too. Try to solve the same problem both ways. This helps you understand the tradeoffs and the fundamental logic. Sometimes recursion is more natural; sometimes iteration is more efficient.

6. Don't Be Afraid to Draw: When dealing with more complex recursive structures (like trees or linked lists), drawing them out and tracing the function's path on the drawing can be incredibly helpful.

7. Practice with Different Data Structures:
Arrays/Lists: Think about operations on subarrays. For example, finding the maximum element in an array: `max(array) = max(first_element, max(rest_of_the_array))`.
Strings: Reversing a string: `reverse("hello") = reverse("ello") + 'h'`.
Trees: This is where recursion is almost always the most elegant way. To process a node, you often process its left child and then its right child.

Potential Pitfalls to Watch Out For

Missing Base Case: We've covered this – it leads to infinite recursion.
Incorrectly Moving Towards Base Case: If your recursive call doesn't actually simplify the problem (e.g., `n + factorial(n)` instead of `n factorial(n1)`), you'll never reach the base case.
Overlapping Subproblems (Inefficiency): As with the naive Fibonacci, some recursive solutions recalculate the same values many times. This can be fixed with techniques like memoization (caching results), but it's something to be aware of.
Stack Overflow: If your recursion goes too deep (e.g., factorial of a very large number, or a poorly designed recursion), you can run out of memory on the call stack.

When is Recursion Particularly Useful?

Recursion is a natural fit for problems that have a selfsimilar structure. This often appears in:

Tree and Graph Traversal: Searching, sorting, and manipulating data in treelike structures.
Divide and Conquer Algorithms: Problems like Merge Sort and Quick Sort break a problem into smaller parts, solve them recursively, and then combine the results.
Fractals: Geometric shapes that exhibit selfsimilarity at different scales.
Parsing and Grammars: Understanding the structure of languages.

Putting It Into Practice

The best way to learn recursion is to do it. Pick a problem, try to define the base case, try to define the recursive step, and then write the code. Don't get discouraged if it doesn't work perfectly the first time. That's part of the process! Trace it, debug it, and refine it.

Think of it like learning a new language. At first, you focus on individual words and simple sentences. Then, you start combining them, and eventually, you can construct complex thoughts. Recursion is no different. Start with the simple building blocks, and with practice, you'll be able to build incredibly elegant solutions.

网友意见

user avatar

谢邀。

我们从小,就一直听着一个递归的故事长大:从前有座山,山里有座庙,庙里有个老和尚在讲故事,老和尚在讲:从前有座山,山里有座庙.......

关于递归的学习,有一个很经典的例子:在学习递归,首先,你应该学习一下,什么是递归。

递归是一种思考问题、描述问题的方法。一个基本的思想就是,把一个复杂问题化为一系列简单问题的重复。

我们以遍历树为例,遍历一棵树,首先先从根节点开始,首先先遍历根节点下的每一个子节点,然后,再把这些子节点,作为一个新的树的根节点,重复上述的遍历过程。伪代码如下

tree_travel( tree_node root )
{
foreach( node in root.children )
tree_travel( node );
}

通过这个例子,我们可以发现,递归还有一个特点,就是问题的规模和解决问题的方法没有关系,或者只是一个参数没有很大的影响。递归所做的,就是把复杂的问题一级一级的展开,使得每一级的处理方法都一模一样。我们在讲一下汉诺塔的例子,我们假设三个柱子分别是ABC,盘子由小到大分别用1、2、3...表示。

对于两个盘子的情况:

首先,先将1盘子从A移动到B,然后将2盘子从A移动到C,最后将1盘子从B移动到C。

三个盘子的情况:

首先,先将1、2盘子从A移动到B,然后将3盘子从A移动到C,最后将1、2盘子从B移动到C。

那么1、2两个盘子怎么样从A移动到B,再从B移动到C呢?其实,这个问题我们刚刚在举两个盘子的例子的时候已经解决过了。

那么,对于64个盘子的情况,我们也可以很容易解决。

首先,先将1,2,3......63盘子从A移动到B,然后将64盘子从A移动到C,最后将1,2,3......63盘子从B移动到C。

而对于1,2,3.....63这63个盘子怎么样从A移动到B,再从B移动到C,我们在解决63个盘子的情况的时候,已经处理过了。

关于递归,上面有几位讲得也比较好,我也就不赘述了。

关于另一个问题,为什么平时的项目中,很少见到递归。这个是因为,一个正经的程序,是应当尽量少或者尽可能不出现递归的程序。在程序中使用递归,除了能够少写几行代码,给程序员带来一点点方便以外,没有别的太多的好处,甚至有时候是有害的。

首先,你应当明确一点,所有的递归程序,都可以改写成非递归的方法,而在这个非递归的方法中,你不得不维护一个栈,来完成原来程序调用栈的能够,从而使得程序能达到跟递归一样的效果。为什么说递归是不好的呢,那是因为调用栈的大小是有限的,而递归的深度,有的时候是不好估计的。一旦递归的深度过大,使得调用栈溢出了,那么对程序的影响是非常大的。而在非递归的方法中,由于栈由自己维护,即使“递归”的深度过大,程序也在你的控制范围之内,可以自己中断“递归”过程并作相应的处理。

然后,递归使得程序书写的效率提高,但并不意味着执行的效率会提高,比如那个斐波那契数列的例子,你自己算一下就会发现有将近一般的计算式重复的,比如那个fibo(n-2)是会计算两次的,而越深的项重复次数就会越多。除了这个问题外,递归程序的执行效率一般也不必循环高,因为在栈上开辟新空间、分配局部变量的时间也是不小的。你可以自己尝试的写一下这样的程序,和@陈甫鸼 同学的那个程序一样,还是那个斐波那契数列的例子,也还是python,非递归的解法。数字不用很大,求斐波那契数列的第50项,递归的方法就已经很难在你能容忍的时间内完成了。

def fibo( n ):
if n <= 0:
raise Exception()
elif n == 1:
return 0
elif n == 2:
return 1
else:
a = 0
b = 1
s = 0
while n > 2:
s = b + a
a = b
b = s
n -= 1
return s

最后,关于递归的建议,一定要会递归的解决问题,但是要避免写递归的程序。

类似的话题

  • 回答
    Recursion, at its core, is a powerful programming concept that allows you to solve problems by breaking them down into smaller, identical subproblems..............
  • 回答
    想给电脑来个“大扫除”,让它运行更顺畅、寿命更长?别担心,给电脑清灰这事儿说白了,就像给家里的电器除尘一样,并不神秘。只要你细心点,跟着步骤来,自己在家也能轻松搞定。一、 清灰前的“武装到牙齿”:准备工作是关键在你撸起袖子开干之前,先把需要的东西都备齐了,这能让你事半功倍,避免手忙脚乱。 吸尘器.............
  • 回答
    学习剪纸是一项充满乐趣且富有文化底蕴的手工技艺。无论是想要制作精美的装饰品,还是体验传统文化,亦或是仅仅想找一项放松的爱好,剪纸都是一个绝佳的选择。下面我将为你详细介绍如何学习剪纸,从入门到进阶的各个环节。第一步:了解剪纸的基础知识和工具在动手之前,先对剪纸有个大概的了解是非常重要的。 剪纸的起.............
  • 回答
    想把 SQL 学得扎实透彻?没问题,这绝对不是什么神秘的东方秘术,而是循序渐进、勤加练习就能攻克的关卡。抛开那些花里胡哨的“AI 痕迹”,咱们就聊聊这实际的路子。第一步:打牢基础,知其所以然SQL,说白了,就是和数据库说话的语言。你想让数据库给你什么信息,就得用它能听懂的话来表达。所以,首要任务是明.............
  • 回答
    想学广州话?挺有意思的!这可不是件一蹴而就的事,得花点心思,但绝对值得。广州话,也就是粤语,有它独特的韵味和魅力,学好了,跟广州的街坊们聊天,吃地道的粤菜,甚至看老港片,都会是另一种感觉。一、 打好基础:听、说、认1. 耳朵要灵光:多听! 最直接的:找广州的朋友! 如果身边有广州的朋友.............
  • 回答
    踏入区块链的世界:一份详尽的学习指南区块链技术,这个曾经只在技术圈内低语的词汇,如今已然成为全球瞩目的焦点。它不仅仅是比特币的基石,更是一种颠覆性的思维模式,正在重塑金融、供应链、身份验证等诸多领域。对于渴望掌握这项前沿技术的你,这份指南将带你循序渐进地深入区块链的每一个层面。第一步:筑牢根基——理.............
  • 回答
    好的,我们来聊聊机构设计和分析这个话题,抛开那些生硬的、听起来像是机器生成的东西,咱们用更接地气的方式,聊聊怎么真正把它学明白。想象一下,你面前摆着一堆零件,你想把它们变成一个能动的玩意儿,完成某个特定的任务,比如拧螺丝、搬运东西,甚至是制造出一段优美的旋律。这就是机构设计最直观的魅力。而机构分析,.............
  • 回答
    要系统地学习现代微分几何,特别是微分流形和黎曼几何,需要打下坚实的数学基础,并遵循循序渐进的学习路径。这绝非一蹴而就,而是一个需要耐心和毅力的过程。下面我将为你详细阐述一个学习框架,并尽量避免AI生成的痕迹,用一种更像是一位经验丰富的数学学习者或教师的语气来分享。第一步:夯实基础——“盖房子先打地基.............
  • 回答
    学习点集拓扑学,这是一趟既严谨又充满趣味的旅程。它不像初等代数那样有直接的计算答案,更多的是在概念的理解、逻辑的推理和构造性的证明中寻找美的所在。作为一名认真想要掌握它的学生,我们可以这样一步步来: 一、 心态的准备:拥抱抽象与严谨首先,你需要做好心理准备。点集拓扑学处理的是“空间”的性质,但这里的.............
  • 回答
    想踏上韩语学习之旅,这绝对是个让人兴奋的决定!很多人可能觉得韩语有点陌生,但其实只要掌握了方法,你会发现它并不比其他语言难。下面我来跟你聊聊,怎么把韩语学得扎实又有趣。第一步:打下坚实的基础——韩文字母(Hangul)这是第一步,也是最关键的一步。千万别小看它! 为什么这么重要? 韩文字母,也就.............
  • 回答
    学习一门新语言,就像打开一扇通往新世界的大门。而哈萨克语,这门在广袤草原上孕育出的语言,其独特的魅力和深厚的文化底蕴,定会让你想要一探究竟。下面,我将为你细细道来,如何一步一步地掌握这门语言,让你的学习之路既扎实又充满乐趣。第一步:奠定基础,认识哈萨克语的模样哈萨克语,顾名思义,属于突厥语族。它有着.............
  • 回答
    学习模拟电路和电路分析,就像解锁一门关于能量流动和物质相互作用的语言。这并非一蹴而就,而是需要循序渐进,一步一个脚印地去理解和掌握。如果你想要扎实地打下基础,我这里有些经验分享,希望能给你带来一些实在的帮助。第一步:奠定坚实的数学和物理基础别害怕!这绝对是最关键的一步。模拟电路和电路分析本身就是数学.............
  • 回答
    漫画分镜,这玩意儿可不是简单地把画面一块块拼起来那么简单。它就像电影的镜头语言,是漫画叙事的骨架,是情绪的推手,更是读者理解剧情的向导。想把分镜玩明白,就得下苦功夫,不是看几篇教程就能速成的。一、 打牢基础:了解漫画语言的核心在你开始折腾分镜之前,得先把一些基础的东西吃透。 阅读,疯狂地阅读! .............
  • 回答
    学习看懂战役态势图,就像学习读懂一张复杂的地图,但这张地图描绘的是战场上瞬息万变的“现在进行时”。它不仅仅是军事符号的堆砌,更是战局走向、敌我力量配置、行动意图的直观展现。要掌握这项技能,需要循序渐进,理解其中的核心要素和逻辑。一、 基础篇:识别地图上的“语言”战役态势图,说到底,是一套高度精炼的视.............
  • 回答
    踩水,这项看似简单却至关重要的游泳技能,能让你在水中保持稳定,解放双手,无论是休息、观察周围环境,还是进行其他水上活动,都显得游刃有余。它不像自由泳那样需要全身协调的划水,也不像蛙泳那样讲究腿部蹬夹的爆发力,踩水更像是一种节奏感和浮力利用的艺术。许多初学者觉得踩水难以掌握,但只要找到正确的方法并勤加.............
  • 回答
    学习高等代数,就像踏上了一趟探索抽象数学世界的奇妙旅程。它不是简单的计算技巧堆砌,而是一种严谨的逻辑思维训练,一种对数学结构本质的深入理解。如果你对数字游戏背后的规律感到好奇,那么高等代数绝对能满足你的求知欲。首先,我们来聊聊高等代数的学习重点。毫无疑问,定理证明是高等代数的核心所在。你可以把它理解.............
  • 回答
    学习五笔,就像解锁一个隐藏在汉字结构深处的秘密花园,一旦入门,你会发现输入汉字的速度和精准度会迎来一个质的飞跃。这不像我们熟悉的拼音,只是把读音拆开来,五笔更像是一种“拆字”游戏,让你以一种全新的视角去审视和理解每一个汉字的构成。刚开始接触五笔,最直接的感觉可能是陌生,甚至有点令人望而却步。因为与拼.............
  • 回答
    想把你的公路车安全、稳当地装进车里,送它去你想骑行的地方,这门“装卸功”可是必学的。别以为这只是个简单的力气活,里面可是有不少门道,学好了,既能保护你的爱车,又能让你事半功倍。首先,咱们得明白,装卸公路车可不是随随便便就能搞定的。你得有几样趁手的家伙。最基本的,得有个车顶架或者后备箱架,这个是固定你.............
  • 回答
    想要深入理解 Lua 虚拟机(VM)的源码,这绝非一蹴而就的事情,而是一个循序渐进、需要耐心和实践的过程。这就像是学习一门复杂的语言,你需要先掌握它的语法,然后才能理解它的表达逻辑,最终才能像母语者一样运用自如。第一步:扎实 Lua 语言基础在 dive into C code 之前,请务必确保你对.............
  • 回答
    学习蕨类植物分类,就像是在探寻一个古老而迷人的家族史。这些从遥远的石炭纪就已在地球上繁衍生息的植物,以其独特而多样的形态征服了世界的每一个角落。要想真正理解蕨类植物的分类体系,你需要沉下心来,像一位侦探一样,仔细观察它们,并逐渐掌握识别它们的线索。第一步:打下坚实的基础——认识蕨类植物的核心特征在深.............

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 tinynews.org All Rights Reserved. 百科问答小站 版权所有