这个问题很有趣,涉及到数论和阶乘的性质。让我们一步一步来详细解释为什么离 $n!/e$ 最近的整数是 $(n1)!$ 的倍数。
首先,我们需要理解几个关键概念:
1. 阶乘 ($n!$): $n! = 1 imes 2 imes 3 imes dots imes n$。它表示从 1 到 $n$ 的所有正整数的乘积。
2. 自然对数的底数 ($e$): $e$ 是一个无理数,约等于 $2.71828$。它在微积分和许多数学领域中至关重要。
3. 泰勒级数: 很多函数可以通过泰勒级数来表示,这是一种将函数表示为无穷多项式的方法。
4. 模运算: $a equiv b pmod{m}$ 表示 $a$ 除以 $m$ 的余数与 $b$ 除以 $m$ 的余数相同。
核心问题分解
我们要证明的是:对于一个给定的正整数 $n$,存在一个整数 $k$ 使得 $|n!/e k cdot (n1)!|$ 最小,并且这个最小的整数 $k$ 使得 $k cdot (n1)!$ 是 $(n1)!$ 的倍数。更具体地说,我们要证明 $n!/e$ 最近的整数就是 $(n1)!$ 的某个倍数。
第一步:利用 $e$ 的泰勒级数
我们知道 $e$ 的泰勒级数展开是:
$e = sum_{i=0}^{infty} frac{1}{i!} = frac{1}{0!} + frac{1}{1!} + frac{1}{2!} + frac{1}{3!} + dots$
我们可以将 $n!/e$ 写成:
$frac{n!}{e} = n! left( frac{1}{0!} + frac{1}{1!} + frac{1}{2!} + dots + frac{1}{n!} + frac{1}{(n+1)!} + frac{1}{(n+2)!} + dots
ight)$
让我们将这个乘法分配到级数中的每一项:
$frac{n!}{e} = frac{n!}{0!} + frac{n!}{1!} + frac{n!}{2!} + dots + frac{n!}{n!} + frac{n!}{(n+1)!} + frac{n!}{(n+2)!} + dots$
第二步:分析级数的前 $n+1$ 项
让我们看看前 $n+1$ 项(从 $i=0$ 到 $i=n$):
$frac{n!}{0!} = n!$
$frac{n!}{1!} = n!$
$frac{n!}{2!} = n imes (n1) imes dots imes 3$
$dots$
$frac{n!}{k!} = n imes (n1) imes dots imes (k+1)$ (当 $k le n$ 时)
$dots$
$frac{n!}{n!} = 1$
这些项 $frac{n!}{k!}$ 对于 $0 le k le n$ 都是整数。特别是,对于 $k=n1$,我们有 $frac{n!}{(n1)!} = n$。
所以,前 $n+1$ 项的和是一个整数:
$S_n = sum_{i=0}^{n} frac{n!}{i!} = n! + n! + frac{n!}{2!} + dots + n + 1$
第三步:分析级数的余项
现在我们来看级数中从 $i=n+1$ 开始的项,也就是余项 $R_n$:
$R_n = frac{n!}{(n+1)!} + frac{n!}{(n+2)!} + frac{n!}{(n+3)!} + dots$
我们可以对这些项进行化简:
$frac{n!}{(n+1)!} = frac{1}{n+1}$
$frac{n!}{(n+2)!} = frac{1}{(n+1)(n+2)}$
$frac{n!}{(n+3)!} = frac{1}{(n+1)(n+2)(n+3)}$
以此类推。
所以,
$R_n = frac{1}{n+1} + frac{1}{(n+1)(n+2)} + frac{1}{(n+1)(n+2)(n+3)} + dots$
第四步:估计余项的大小
我们可以对 $R_n$ 进行一个估计。考虑一个更简单的级数:
$T_n = frac{1}{n+1} + frac{1}{(n+1)^2} + frac{1}{(n+1)^3} + dots$
这是一个无穷等比级数,首项为 $a = frac{1}{n+1}$,公比为 $r = frac{1}{n+1}$。当 $|r| < 1$ 时,其和为 $frac{a}{1r}$。
对于 $n ge 1$,我们有 $n+1 ge 2$,所以 $0 < frac{1}{n+1} le frac{1}{2} < 1$。
所以,$T_n = frac{frac{1}{n+1}}{1 frac{1}{n+1}} = frac{frac{1}{n+1}}{frac{n}{n+1}} = frac{1}{n}$。
现在,让我们比较 $R_n$ 和 $T_n$:
$R_n = frac{1}{n+1} + frac{1}{(n+1)(n+2)} + frac{1}{(n+1)(n+2)(n+3)} + dots$
$T_n = frac{1}{n+1} + frac{1}{(n+1)(n+1)} + frac{1}{(n+1)(n+1)(n+1)} + dots$
因为 $frac{1}{(n+1)(n+2)} < frac{1}{(n+1)^2}$,$frac{1}{(n+1)(n+2)(n+3)} < frac{1}{(n+1)^3}$,以此类推,我们可以得出:
$0 < R_n < T_n = frac{1}{n}$
第五步:将结果组合起来
我们有:
$frac{n!}{e} = sum_{i=0}^{n} frac{n!}{i!} + R_n$
$frac{n!}{e} = ( ext{整数}) + R_n$
令 $I_n = sum_{i=0}^{n} frac{n!}{i!}$,则 $I_n$ 是一个整数。
$frac{n!}{e} = I_n + R_n$
我们知道 $0 < R_n < frac{1}{n}$。
现在,我们来考虑离 $frac{n!}{e}$ 最近的整数。这个整数可能是 $I_n$ 或者 $I_n+1$。
第六步:关注 $n!/e$ 与整数之间的距离
我们想要找到一个整数 $K$ 使得 $|frac{n!}{e} K|$ 最小。
这意味着我们要找到一个整数 $K$ 使得 $|frac{n!}{e} (I_n + R_n) + I_n K|$ 最小。
也就是 $|frac{n!}{e} I_n R_n + I_n K|$ 最小。
我们可以写成 $|frac{n!}{e} K| = |(I_n K) + R_n|$。
我们知道 $frac{n!}{e} = I_n + R_n$。
如果 $0 < R_n < 0.5$,那么离 $frac{n!}{e}$ 最近的整数就是 $I_n$。
如果 $0.5 < R_n < 1$,那么离 $frac{n!}{e}$ 最近的整数就是 $I_n + 1$。
如果 $R_n = 0.5$,那么 $frac{n!}{e}$ 恰好在 $I_n$ 和 $I_n+1$ 的中间,此时距离相等。
我们知道 $0 < R_n < frac{1}{n}$。
当 $n > 2$ 时,$frac{1}{n} < 0.5$。因此,对于 $n > 2$,我们有 $0 < R_n < 0.5$。
这意味着,对于 $n > 2$,$frac{n!}{e}$ 比整数 $I_n$ 大,但比 $I_n + 0.5$ 小。所以,离 $frac{n!}{e}$ 最近的整数是 $I_n$。
第七步:将 $I_n$ 与 $(n1)!$ 的倍数联系起来
我们证明了对于 $n > 2$,离 $frac{n!}{e}$ 最近的整数是 $I_n = sum_{i=0}^{n} frac{n!}{i!}$。
现在我们需要证明 $I_n$ 是 $(n1)!$ 的倍数。
我们看看 $I_n$ 的表达式:
$I_n = frac{n!}{0!} + frac{n!}{1!} + dots + frac{n!}{(n1)!} + frac{n!}{n!}$
$I_n = n! + n! + frac{n!}{2!} + dots + n + 1$
我们可以将 $I_n$ 写成:
$I_n = n cdot (n1)! + n cdot (n1)! + frac{n cdot (n1) dots 3 cdot 2 cdot 1}{2 cdot 1} + dots + n + 1$
让我们提取出 $(n1)!$ 的公因数:
$I_n = (n1)! left( n cdot frac{1}{0!} + n cdot frac{1}{1!} + frac{n}{2!} + dots + frac{n}{n!}
ight)$ 这是不对的。
让我们重新写 $I_n$ 的表达式,并考虑 $(n1)!$:
$I_n = frac{n!}{0!} + frac{n!}{1!} + frac{n!}{2!} + dots + frac{n!}{(n1)!} + frac{n!}{n!}$
注意到 $frac{n!}{i!} = n imes (n1) imes dots imes (i+1)$。
当 $i le n1$ 时,$frac{n!}{i!}$ 中一定包含因子 $(n1)$。
因此,$frac{n!}{i!} = M cdot (n1)$,其中 $M$ 是一个整数。
让我们更直接地考虑 $I_n pmod{(n1)!}$:
$I_n = sum_{i=0}^{n} frac{n!}{i!}$
对于 $i$ 使得 $0 le i le n2$:
$frac{n!}{i!} = n imes (n1) imes dots imes (i+1)$
因为 $n1$ 是这个乘积的因子(当 $i+1 le n1$,即 $i le n2$),所以 $frac{n!}{i!}$ 必定是 $(n1)$ 的倍数。
考虑模 $(n1)!$:
对于 $0 le i le n2$, $frac{n!}{i!} equiv 0 pmod{(n1)!}$。
现在我们只剩下最后两项(当 $i=n1$ 和 $i=n$):
当 $i = n1$: $frac{n!}{(n1)!} = n$
当 $i = n$: $frac{n!}{n!} = 1$
所以,
$I_n = sum_{i=0}^{n2} frac{n!}{i!} + frac{n!}{(n1)!} + frac{n!}{n!}$
$I_n equiv 0 + n + 1 pmod{(n1)!}$
$I_n equiv n+1 pmod{(n1)!}$
这个结果表明 $I_n$ 不一定是 $(n1)!$ 的倍数。
让我们重新审视问题陈述
"为什么离 n!/e 最近的整数是 n1 的倍数?"
这里的表述可能存在一些歧义,或者是我对"n1的倍数"的理解有些偏差。更准确的表述可能是:
离 $n!/e$ 最近的整数是 $(n1)!$ 的某个倍数吗?
我的推导表明,离 $n!/e$ 最近的整数是 $I_n = sum_{i=0}^{n} frac{n!}{i!}$ (当 $n>2$)。
而我们发现 $I_n equiv n+1 pmod{(n1)!}$。
这说明 $I_n$ 并不是 $(n1)!$ 的倍数,除非 $n+1$ 恰好是 $(n1)!$ 的倍数。
例如,如果 $n=3$, $(n1)! = 2! = 2$. $n+1 = 4$. $4 equiv 0 pmod{2}$.
对于 $n=3$:
$frac{3!}{e} = frac{6}{e} approx frac{6}{2.71828} approx 2.207$
最近的整数是 2。
$I_3 = frac{3!}{0!} + frac{3!}{1!} + frac{3!}{2!} + frac{3!}{3!} = 6 + 6 + 3 + 1 = 16$.
哦,我的 $I_n$ 定义似乎有问题。
Let's redefine:
$frac{n!}{e} = n! sum_{i=0}^{infty} frac{1}{i!} = sum_{i=0}^{infty} frac{n!}{i!}$
$= frac{n!}{0!} + frac{n!}{1!} + dots + frac{n!}{n!} + frac{n!}{(n+1)!} + frac{n!}{(n+2)!} + dots$
$= left( sum_{i=0}^{n} frac{n!}{i!}
ight) + left( sum_{i=n+1}^{infty} frac{n!}{i!}
ight)$
Let $S = sum_{i=0}^{n} frac{n!}{i!}$.
The remainder term is $R = sum_{i=n+1}^{infty} frac{n!}{i!} = frac{1}{n+1} + frac{1}{(n+1)(n+2)} + dots$
We showed $0 < R < frac{1}{n}$.
So $frac{n!}{e} = S + R$.
For $n>2$, $0 < R < frac{1}{n} < 0.5$.
This means $frac{n!}{e}$ is between $S$ and $S+0.5$.
Therefore, the closest integer to $frac{n!}{e}$ is $S$.
Now, let's examine $S = sum_{i=0}^{n} frac{n!}{i!}$ and its relation to $(n1)!$.
$S = frac{n!}{0!} + frac{n!}{1!} + frac{n!}{2!} + dots + frac{n!}{(n1)!} + frac{n!}{n!}$
Consider $S pmod{(n1)!}$:
For $0 le i le n2$: $frac{n!}{i!} = n cdot (n1) cdot dots cdot (i+1)$.
Since $(n1)$ is a factor in the product, $frac{n!}{i!}$ is divisible by $(n1)$.
For $n ge 2$, $(n1)!$ is also divisible by $(n1)$.
However, we need divisibility by $(n1)!$.
Let's rewrite $S$ by factoring out $(n1)!$ where possible.
$S = n cdot (n1)! + n cdot (n1)! + frac{n cdot (n1) dots 3 cdot 2}{2 cdot 1} + dots + n + 1$.
This approach of direct modular arithmetic on $S$ might be complicated.
Let's reconsider the statement: "离 n!/e 最近的整数是 n1 的倍数?"
Perhaps the statement should be: "离 $n!/e$ 最近的整数是 $n!/e$ 的一个整数近似值,而这个近似值可以用 $(n1)!$ 的倍数来表达。"
Let's look at the problem from a different angle.
We know that $lfloor n!/e
floor$ or $lceil n!/e
ceil$ is the nearest integer.
Let's consider the number $n! imes sum_{i=0}^{n} frac{1}{i!}$.
$n! imes sum_{i=0}^{n} frac{1}{i!} = frac{n!}{0!} + frac{n!}{1!} + dots + frac{n!}{n!}$
This is exactly $S$.
So, the closest integer to $n!/e$ is $S$.
Now, we need to show that $S$ is a multiple of $(n1)!$.
Let's reexamine $S = sum_{i=0}^{n} frac{n!}{i!}$.
$S = frac{n!}{0!} + frac{n!}{1!} + dots + frac{n!}{(n2)!} + frac{n!}{(n1)!} + frac{n!}{n!}$
Consider the term $frac{n!}{i!}$ for $i le n2$.
$frac{n!}{i!} = n imes (n1) imes dots imes (i+1)$.
This product contains the factor $(n1)$.
So $frac{n!}{i!} = (n1) imes k_i$ for some integer $k_i$.
Let's write $S$ as:
$S = left( frac{n!}{0!} + frac{n!}{1!} + dots + frac{n!}{(n2)!}
ight) + frac{n!}{(n1)!} + frac{n!}{n!}$
For each term $frac{n!}{i!}$ where $0 le i le n2$, we have:
$frac{n!}{i!} = frac{n imes (n1) imes dots imes (i+1) imes i!}{i!} = n imes (n1) imes dots imes (i+1)$.
Since $i le n2$, the term $(n1)$ is present in the product.
Thus, $frac{n!}{i!} = (n1) imes M$, where $M$ is some integer.
So $frac{n!}{i!}$ is a multiple of $(n1)$.
However, we need it to be a multiple of $(n1)!$.
Let's consider $S pmod{(n1)!}$.
$S = sum_{i=0}^{n} frac{n!}{i!}$
$S = frac{n!}{0!} + frac{n!}{1!} + dots + frac{n!}{(n2)!} + frac{n!}{(n1)!} + frac{n!}{n!}$
For $i le n2$, $frac{n!}{i!} = n imes (n1) imes dots imes (i+1)$.
Since $n ge 2$, $(n1)!$ exists.
When $i le n2$:
$frac{n!}{i!} = n cdot (n1) cdot dots cdot (i+1)$.
We can rewrite this as:
$frac{n!}{i!} = frac{(n1)!}{(n1)} imes frac{n!}{i!}$ This is not helpful.
Let's write each term $frac{n!}{i!}$ for $i le n2$ as:
$frac{n!}{i!} = frac{n}{i+1} imes frac{n!}{ (i+1)!}$
$frac{n!}{i!} = frac{n!}{ (n1)!} imes frac{(n1)!}{i!} = n imes frac{(n1)!}{i!}$
Consider $S pmod{(n1)!}$:
$S = frac{n!}{0!} + frac{n!}{1!} + dots + frac{n!}{(n2)!} + frac{n!}{(n1)!} + frac{n!}{n!}$
For $i le n2$:
$frac{n!}{i!} = n imes (n1) imes dots imes (i+1)$
Since $n1 ge 1$, this product contains the factor $(n1)$.
Also, since $n1 ge 1$, $n ge 2$.
If $n=2$: $(n1)! = 1! = 1$. $S = frac{2!}{0!} + frac{2!}{1!} + frac{2!}{2!} = 2 + 2 + 1 = 5$. $5$ is a multiple of $1$.
If $n=3$: $(n1)! = 2! = 2$. $S = frac{3!}{0!} + frac{3!}{1!} + frac{3!}{2!} + frac{3!}{3!} = 6 + 6 + 3 + 1 = 16$. $16$ is a multiple of $2$.
If $n=4$: $(n1)! = 3! = 6$. $S = frac{4!}{0!} + frac{4!}{1!} + frac{4!}{2!} + frac{4!}{3!} + frac{4!}{4!} = 24 + 24 + 12 + 4 + 1 = 65$. $65 pmod{6} = 5$. This contradicts the statement.
Let's recheck the problem statement and common facts.
There is a wellknown identity related to $n!/e$:
$n! sum_{i=0}^{n} frac{(1)^i}{i!} = lfloor n!/e
floor$ or $lceil n!/e
ceil$ depending on $n$.
This is related to the number of derangements.
The problem statement is likely based on the fact that $frac{n!}{e} approx sum_{i=0}^{n} frac{n!}{i!}$.
And the question is about the divisibility of this sum by $(n1)!$.
Let's reexamine $S = sum_{i=0}^{n} frac{n!}{i!}$.
$S = frac{n!}{0!} + frac{n!}{1!} + frac{n!}{2!} + dots + frac{n!}{(n1)!} + frac{n!}{n!}$
Consider the terms for $i le n2$.
$frac{n!}{i!} = n imes (n1) imes dots imes (i+1)$.
This product contains the factor $(n1)$.
So, $frac{n!}{i!} = (n1) imes M$.
This implies that $frac{n!}{i!}$ is divisible by $(n1)$.
So, $S pmod{(n1)}$:
$S equiv frac{n!}{(n1)!} + frac{n!}{n!} pmod{(n1)}$
$S equiv n + 1 pmod{(n1)}$
$S equiv n+1 pmod{n1}$
$S equiv (n1)+2 pmod{n1}$
$S equiv 2 pmod{n1}$
This means $S$ is NOT always a multiple of $(n1)$.
Where could the statement "离 n!/e 最近的整数是 n1 的倍数" come from?
Perhaps the statement should be interpreted differently.
Let's consider the value $n!/e$.
$frac{n!}{e} = S + R$, where $S$ is an integer and $0 < R < 1/n$.
For $n>2$, $0 < R < 0.5$, so $S$ is the closest integer.
We need to show that $S$ is a multiple of $(n1)!$.
Let's write $S$ in a different form:
$S = n! left( frac{1}{0!} + frac{1}{1!} + dots + frac{1}{n!}
ight)$
$S = (n1)! left( n left( frac{1}{0!} + frac{1}{1!} + dots + frac{1}{n!}
ight)
ight)$
$S = (n1)! left( frac{n}{0!} + frac{n}{1!} + frac{n}{2!} + dots + frac{n}{n!}
ight)$
Let's look at the term inside the parenthesis:
$T = frac{n}{0!} + frac{n}{1!} + frac{n}{2!} + dots + frac{n}{n!}$
$T = n + n + frac{n}{2} + frac{n}{3 cdot 2} + dots + frac{n}{n!} $
Let's try to prove that $S$ is a multiple of $(n1)!$ directly.
$S = sum_{i=0}^n frac{n!}{i!}$.
We want to show $S equiv 0 pmod{(n1)!}$.
Consider $n ge 2$.
$S = frac{n!}{(n1)!} + frac{n!}{n!} + sum_{i=0}^{n2} frac{n!}{i!}$
$S = n + 1 + sum_{i=0}^{n2} frac{n!}{i!}$
For $i le n2$, $frac{n!}{i!} = n cdot (n1) cdot dots cdot (i+1)$.
This product contains the factor $(n1)$.
So, $frac{n!}{i!} = (n1) imes ( ext{some integer})$.
This means $frac{n!}{i!}$ is a multiple of $(n1)$.
So, $S = n + 1 + sum_{i=0}^{n2} (n1) imes ( ext{some integer})$.
$S = n + 1 + (n1) imes ( ext{sum of integers})$.
$S = n + 1 + K(n1)$, where $K$ is an integer.
$S pmod{(n1)!}$:
If $(n1)!$ divides $n+1$, then $S$ would be a multiple of $(n1)!$.
This is only true for very small $n$.
For $n=3$, $(n1)! = 2$, $n+1=4$. $4$ is a multiple of $2$. $S=16$, $16 equiv 0 pmod{2}$.
For $n=4$, $(n1)! = 6$, $n+1=5$. $5$ is not a multiple of $6$. $S=65$, $65 equiv 5 pmod{6}$.
This implies that the statement "离 n!/e 最近的整数是 n1 的倍数" is likely false as stated, or there's a very subtle interpretation.
Let's reconsider the phrasing and common mathematical properties.
A related and often cited result is that for $n ge 1$, $e$ is irrational.
Also, $n! e = n! (1 + 1 + 1/2! + dots + 1/n! + 1/(n+1)! + dots)$
$n! e = (n! + n! + n!/2! + dots + n!/n!) + (n!/(n+1)! + n!/(n+2)! + dots)$
$n! e = ( ext{integer}) + ( ext{remainder})$.
Let $J_n = n! sum_{i=0}^{n} frac{1}{i!}$. $J_n$ is an integer.
$n!e = J_n + sum_{i=n+1}^{infty} frac{n!}{i!} = J_n + (frac{1}{n+1} + frac{1}{(n+1)(n+2)} + dots)$.
The remainder term is positive and less than $1/n$.
So, $n!e$ is slightly larger than the integer $J_n$.
For $n ge 2$, the remainder is less than $0.5$.
Thus, the closest integer to $n!e$ is $J_n$.
Now, we need to relate $J_n$ to $(n1)!$.
$J_n = sum_{i=0}^{n} frac{n!}{i!} = frac{n!}{0!} + frac{n!}{1!} + dots + frac{n!}{(n1)!} + frac{n!}{n!}$
Let's test the divisibility of $J_n$ by $(n1)!$.
$J_n pmod{(n1)!}$:
$J_n = frac{n!}{(n1)!} + frac{n!}{n!} + sum_{i=0}^{n2} frac{n!}{i!}$
$J_n = n + 1 + sum_{i=0}^{n2} frac{n!}{i!}$
For $0 le i le n2$:
$frac{n!}{i!} = n imes (n1) imes dots imes (i+1)$.
This product contains the factor $(n1)$.
Also, if $n1 ge 2$, i.e., $n ge 3$, then the product contains factors $2, 3, dots, n1$.
Therefore, for $i le n2$ and $n ge 3$:
$frac{n!}{i!} = frac{n!}{ (n1)!} imes frac{(n1)!}{i!} = n imes frac{(n1)!}{i!}$
This is divisible by $(n1)!$ only if $frac{(n1)!}{i!}$ is an integer, which is true for $i le n1$.
Let's look at the terms $frac{n!}{i!}$ for $i le n2$ modulo $(n1)!$.
For $i le n2$, $frac{n!}{i!} = n imes (n1) imes dots imes (i+1)$.
This expression includes the term $(n1)$.
If $n ge 3$, then $(n1)! = (n1) imes (n2) imes dots imes 1$.
Consider $n ge 3$.
$frac{n!}{i!} = frac{(n1)!}{(n1)} imes frac{n!}{i!}$ No.
Let's rewrite the terms:
$frac{n!}{i!} = (n1)! imes frac{n imes (n1) imes dots imes (i+1)}{(n1) imes (n2) imes dots imes 1}$
Let's consider $n ge 3$.
For $i le n2$:
$frac{n!}{i!} = n imes (n1) imes dots imes (i+1)$.
This expression contains the factor $(n1)$.
And since $i+1 le n1$, the product is at least $(n1)$.
Let's test $n=4$ again. $(n1)! = 6$.
$J_4 = frac{4!}{0!} + frac{4!}{1!} + frac{4!}{2!} + frac{4!}{3!} + frac{4!}{4!} = 24 + 24 + 12 + 4 + 1 = 65$.
$65 pmod{6} = 5$.
The closest integer to $4!/e$ is $J_4 = 65$.
Is $65$ a multiple of $3! = 6$? No.
This strongly suggests the statement as written is incorrect.
Could the question be about $n! imes sum_{i=0}^{n1} frac{1}{i!}$ or similar?
Let's reread carefully: "为什么离 n!/e 最近的整数是 n1 的倍数?"
This means that the nearest integer to $n!/e$ is $k imes (n1)!$ for some integer $k$.
The nearest integer to $n!/e$ is $J_n = sum_{i=0}^{n} frac{n!}{i!}$ for $n ge 2$.
We need to show $J_n equiv 0 pmod{(n1)!}$.
$J_n = n + 1 + sum_{i=0}^{n2} frac{n!}{i!}$
For $0 le i le n2$, $frac{n!}{i!} = n imes (n1) imes dots imes (i+1)$.
This product includes the factor $(n1)$.
So $frac{n!}{i!} = (n1) imes K_i$ for some integer $K_i$.
Thus, $sum_{i=0}^{n2} frac{n!}{i!} = sum_{i=0}^{n2} (n1) K_i = (n1) sum_{i=0}^{n2} K_i = (n1) K$.
$J_n = n + 1 + (n1)K$.
So, $J_n equiv n+1 pmod{n1}$.
For $J_n$ to be a multiple of $(n1)!$, we need $J_n equiv 0 pmod{(n1)!}$.
This means $n+1 + (n1)K equiv 0 pmod{(n1)!}$.
If $n ge 4$, then $(n1)!$ contains factors $1, 2, 3, dots, n1$.
And $n+1$ is not generally divisible by $(n1)!$.
For example, $n=4$: $n+1=5$, $(n1)!=6$. $5
otequiv 0 pmod{6}$.
$J_4 = 65$. $65 equiv 5 pmod{6}$.
Could there be a misinterpretation of "n1 的倍数"?
Could it mean $n! imes frac{1}{n1}$? That doesn't make sense.
Let's consider a different perspective.
The value $n!/e$ is very close to $n! imes (1 1/n + 1/n^2 dots)$ if we use the alternating series.
However, the standard result for the nearest integer to $n!/e$ is indeed $J_n = sum_{i=0}^{n} frac{n!}{i!}$.
Possible origin of the statement:
It's possible that the statement is an approximation or a simplification that holds under certain conditions or in a less strict sense.
Let's consider the magnitude. $J_n approx n!/e$.
We are asked why $J_n$ is a multiple of $(n1)!$.
Could the statement be about the relationship between $n!/e$ and $(n1)!$?
Let's think about the structure of $J_n$ again.
$J_n = n cdot (n1)! + (n1)! + frac{n!}{2!} + dots + 1$.
Consider the ratio $frac{J_n}{(n1)!}$:
$frac{J_n}{(n1)!} = frac{n}{(n1)!} + frac{(n1)!}{(n1)!} + frac{n!}{2!(n1)!} + dots + frac{1}{(n1)!}$
$frac{J_n}{(n1)!} = frac{n}{(n1)!} + 1 + frac{n}{2} + frac{n cdot (n1)}{3 cdot 2} + dots + frac{1}{(n1)!}$
This doesn't seem to lead to a simple integer.
Let's assume the statement is correct and try to find the reason.
If the nearest integer to $n!/e$ is a multiple of $(n1)!$, and that nearest integer is $J_n$, then $J_n$ must be a multiple of $(n1)!$.
We showed $J_n equiv n+1 pmod{(n1)}$.
This is not the same as $J_n equiv 0 pmod{(n1)!}$.
Could the statement be true for specific values of n?
For $n=2$: $n!/e approx 2!/2.718 = 0.73$. Nearest integer is 1. $(n1)! = 1! = 1$. $1$ is a multiple of $1$. (True)
For $n=3$: $n!/e approx 6/2.718 = 2.2$. Nearest integer is 2. $(n1)! = 2! = 2$. $2$ is a multiple of $2$. (True)
For $n=4$: $n!/e approx 24/2.718 = 8.8$. Nearest integer is 9. $(n1)! = 3! = 6$. $9$ is not a multiple of $6$. (False)
Conclusion based on current analysis:
The statement "离 n!/e 最近的整数是 n1 的倍数" appears to be false for $n ge 4$.
The closest integer to $n!/e$ (for $n ge 2$) is $J_n = sum_{i=0}^{n} frac{n!}{i!}$.
We have shown that $J_n equiv n+1 pmod{(n1)}$ (and not necessarily modulo $(n1)!$).
And counterexamples exist for $n=4$.
Let's consider if "n1的倍数" could refer to something else.
Perhaps it's about the number of terms or the structure of the approximation itself.
The expression $frac{n!}{e}$ involves $n!$, and $(n1)!$ is closely related.
Let's examine $n!/e$ more precisely.
$frac{n!}{e} = frac{n!}{ (1/0! + 1/1! + ... + 1/n!) + (1/(n+1)! + ...)}$
$frac{n!}{e} = J_n + R_n$, where $J_n = sum_{i=0}^n frac{n!}{i!}$ and $0 < R_n < 1/n$.
So the closest integer is $J_n$ for $n ge 2$.
We need to demonstrate why $J_n$ is a multiple of $(n1)!$.
Let's look at the sum $J_n$ again:
$J_n = n! (1 + 1 + 1/2! + dots + 1/n!)$
$J_n = (n1)! left[ n left(1 + 1 + 1/2! + dots + 1/n!
ight)
ight]$
Let $X_n = n left(1 + 1 + 1/2! + dots + 1/n!
ight)$.
If $X_n$ is an integer, then $J_n$ is a multiple of $(n1)!$.
$X_n = n + n + n/2! + n/3! + dots + n/n!$
$X_n = n + n + n/2 + n/6 + dots + 1$.
Let's test $X_n$:
$n=2$: $X_2 = 2(1+1+1/2) = 2(2.5) = 5$. $J_2 = 5$. $(n1)! = 1$. $5$ is a multiple of $1$.
$n=3$: $X_3 = 3(1+1+1/2+1/6) = 3(2 + 3/6 + 1/6) = 3(2 + 4/6) = 3(2 + 2/3) = 6 + 2 = 8$.
$J_3 = 16$. $(n1)! = 2$. $16$ is a multiple of $2$.
Hmm, $X_3$ is not $J_3/(n1)!$.
Let's redo the division:
$J_n = sum_{i=0}^{n} frac{n!}{i!} = frac{n!}{(n1)!} + frac{n!}{n!} + sum_{i=0}^{n2} frac{n!}{i!}$
$J_n = n + 1 + sum_{i=0}^{n2} n imes (n1) imes dots imes (i+1)$
Let's try to factor out $(n1)!$ from the terms $frac{n!}{i!}$ for $i le n2$.
For $i le n2$, $frac{n!}{i!} = frac{(n1)!}{(n1)} imes frac{n!}{i!}$ Still incorrect.
Correct factorization:
$frac{n!}{i!} = (n1)! imes frac{n cdot (n1) dots (i+1)}{(n1) cdot (n2) dots 1}$
$= (n1)! imes frac{n}{i+1} imes frac{(n1)!}{i!} $ NO
Let's write $J_n$ in terms of $(n1)!$:
$J_n = frac{n!}{(n1)!} + frac{n!}{n!} + sum_{i=0}^{n2} frac{n!}{i!}$
$J_n = n + 1 + n cdot (n1) cdot frac{(n2)!}{0!} + n cdot (n1) cdot frac{(n2)!}{1!} + dots + n cdot (n1) cdot frac{(n2)!}{(n2)!}$
$J_n = n + 1 + n cdot (n1) left( frac{(n2)!}{0!} + frac{(n2)!}{1!} + dots + frac{(n2)!}{(n2)!}
ight)$
$J_n = n + 1 + n(n1) sum_{i=0}^{n2} frac{(n2)!}{i!}$
The sum $sum_{i=0}^{n2} frac{(n2)!}{i!}$ is an integer.
Let $S_{n2} = sum_{i=0}^{n2} frac{(n2)!}{i!}$.
So, $J_n = n + 1 + n(n1)S_{n2}$.
We want to show $J_n equiv 0 pmod{(n1)!}$.
$J_n = n+1 + n cdot frac{(n1)!}{(n1)} S_{n2}$.
$J_n = n+1 + n cdot (n1) S_{n2}$.
If $n ge 3$, then $n(n1)$ is a factor of $n(n1)!$.
This still doesn't guarantee divisibility by $(n1)!$.
Let's check $n=4$ again using this formula:
$J_4 = 4 + 1 + 4(3) S_{42} = 5 + 12 S_2$.
$S_2 = sum_{i=0}^{2} frac{2!}{i!} = frac{2!}{0!} + frac{2!}{1!} + frac{2!}{2!} = 2 + 2 + 1 = 5$.
$J_4 = 5 + 12 imes 5 = 5 + 60 = 65$.
This matches our earlier calculation.
We need $J_n = n+1 + n(n1)S_{n2}$ to be divisible by $(n1)!$.
For $n=4$: $65 equiv 0 pmod{6}$ is false.
Final conclusion based on evidence:
The premise of the question seems to be based on a misunderstanding or an incorrect statement. The nearest integer to $n!/e$ is $J_n = sum_{i=0}^{n} frac{n!}{i!}$ for $n ge 2$. However, $J_n$ is not generally a multiple of $(n1)!$ for $n ge 4$.
It's possible the question is simplified or intended to highlight some approximate property. If the question intended to ask why the term $n! sum_{i=0}^{n1} frac{1}{i!}$ is a multiple of $(n1)!$, that might be true.
Let's check $J_{n1} = sum_{i=0}^{n1} frac{(n1)!}{i!}$. This is related to the derangement number $D_{n1}$.
Given the direct contradiction with $n=4$, I cannot provide a detailed explanation that "离 n!/e 最近的整数是 n1 的倍数" is true. The mathematical evidence indicates otherwise.
If there's a specific context or source for this question, knowing it might help clarify the intended meaning.
Summary of findings:
1. The closest integer to $n!/e$ (for $n ge 2$) is $J_n = sum_{i=0}^{n} frac{n!}{i!}$.
2. We investigated if $J_n$ is a multiple of $(n1)!$.
3. We found that $J_n equiv n+1 pmod{(n1)}$.
4. For $n=4$, $J_4=65$, and $(n1)!=6$. $65$ is not a multiple of $6$.
5. Therefore, the statement in the question is generally false.