没有完全理解题主想要问什么,如果使用同样的mapping(脱离上下文),那源端语言的一个单词怎样得到目标端语言的不同单词。
你所说的语言之间的映射,取决于语言之间的相似程度,大部分时候都不是线性的。直观上来说,很多中文/英文词都没有对应的翻译,说明他们在各自的语义空间里的分布是不完全相似的(比如,presentation就很难找一个贴切的中文翻译)。但是用线性关系去近似不同语言之间的embedding是比较方便的,同时,虽然整个embedding space可能没有线性映射关系,但是不妨碍局部存在线性映射(e.g. anchor words)。
比如Adversarial Training for Unsupervised Bilingual Lexicon Induction 里的猫马猪(英西)
Unsupervised Alignment of Embeddings with Wasserstein Procrustes里面的水空气土地(英法)
Learning bilingual word embeddings with (almost) no bilingual data 里面的数字
数字好处在于语义明确,通用性强,缺点是样本少。用字典的好处在于样本多,缺点是可能会在通用性上有一定的妥协,同时对于很多语言可能没有办法构造足够多的平行语料对,Word Translation without Parallel Data里面的CSLS一定程度上缓解了对于语言相似性和平行语料的依赖。
当然了,语言自身也是会不断演化的,选用词向量的时候,也要考虑历史的进程(雾
如果你要用的是基于上下文的表示/内容的表示的话,某种程度上已经超出了word embedding的范畴了,不妨考虑一下BERT。
仅为抛砖引玉