2015是深度学习框架的黄金一年,到了2018年,我倒是感觉已经进入稳定期。两个月前跟tensorflow团队聊了一次,在讨论未来五年大方向时,包括jeff dean在内都赞同框架本身已经是进入稳定期,tf因为有包括搜索和广告在内的重要用户,所以大变动可能性不高。mxnet同样也是这样,amazon内部和多个大的aws用户的产品都依赖mxnet。可以预见,未来的大趋势是让前端更好用,更加稳定,而且不断改进性能,特别的是新模型和新硬件。
同时,我们也注意到深度学习应用的普及在加速。很大一部分新用户其实不关心是用什么框架,而是如何快速上手某个算法,并应用到自己的研究或者公司项目中去。所以一年前开始mxnet社区开始了下面这四个项目:
我的个人建议是,框架只是一个工具,是为应用服务。我们的目标应该是深度学习本身,包括了解各个算法,知道state-of-the-art中的各种细节,和懂得如何将技术应用到实际中去。在学习算法的过程中了解框架的使用,从而使得你的开发更快。所以,如果你想:
如果你有不同的想法,欢迎跟我们留言 :)
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 tinynews.org All Rights Reserved. 百科问答小站 版权所有